|
|
A319932
|
|
a(n) = (1/720)*n*(n - 10)*(n - 1)*(n^3 - 34*n^2 + 181*n - 144).
|
|
3
|
|
|
0, 0, -2, -7, -10, -5, 11, 35, 56, 54, 0, -143, -418, -871, -1547, -2485, -3712, -5236, -7038, -9063, -11210, -13321, -15169, -16445, -16744, -15550, -12220, -5967, 4158, 19285, 40745, 70091, 109120, 159896, 224774, 306425, 407862, 532467, 684019, 866723
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..39.
|
|
FORMULA
|
a(n) = [x^5] DedekindEta(x)^n.
a(n) = A319933(n, 5).
|
|
MAPLE
|
a := n -> (1/720)*n*(n-10)*(n-1)*(n^3-34*n^2+181*n-144);
seq(a(n), n=0..39);
|
|
CROSSREFS
|
Cf. A000012 (m=0), A001489 (m=1), A080956 (m=2), A167541 (m=3), A319930 (m=4), A319931 (m=5), this sequence (m=6).
Cf. A319933.
Sequence in context: A042157 A012937 A022414 * A236243 A024831 A194421
Adjacent sequences: A319929 A319930 A319931 * A319933 A319934 A319935
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Peter Luschny, Oct 02 2018
|
|
STATUS
|
approved
|
|
|
|