login
A319932
a(n) = (1/720)*n*(n - 10)*(n - 1)*(n^3 - 34*n^2 + 181*n - 144).
3
0, 0, -2, -7, -10, -5, 11, 35, 56, 54, 0, -143, -418, -871, -1547, -2485, -3712, -5236, -7038, -9063, -11210, -13321, -15169, -16445, -16744, -15550, -12220, -5967, 4158, 19285, 40745, 70091, 109120, 159896, 224774, 306425, 407862, 532467, 684019, 866723
OFFSET
0,3
FORMULA
a(n) = [x^5] DedekindEta(x)^n.
a(n) = A319933(n, 5).
MAPLE
a := n -> (1/720)*n*(n-10)*(n-1)*(n^3-34*n^2+181*n-144);
seq(a(n), n=0..39);
CROSSREFS
Cf. A000012 (m=0), A001489 (m=1), A080956 (m=2), A167541 (m=3), A319930 (m=4), A319931 (m=5), this sequence (m=6).
Cf. A319933.
Sequence in context: A042157 A012937 A022414 * A236243 A024831 A362861
KEYWORD
sign
AUTHOR
Peter Luschny, Oct 02 2018
STATUS
approved