login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233673
Expansion of phi(q) * phi(q^9) / phi(q^3)^2 in powers of q where phi() is a Ramanujan theta function.
3
1, 2, 0, -4, -6, 0, 12, 16, 0, -28, -36, 0, 60, 76, 0, -120, -150, 0, 228, 280, 0, -416, -504, 0, 732, 878, 0, -1252, -1488, 0, 2088, 2464, 0, -3408, -3996, 0, 5460, 6364, 0, -8600, -9972, 0, 13344, 15400, 0, -20424, -23472, 0, 30876, 35346, 0, -46152, -52644
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^5 * eta(q^3)^4 * eta(q^12)^4 * eta(q^18)^5 / (eta(q)^2 * eta(q^4)^2 * eta(q^6)^10 * eta(q^9)^2 * eta(q^36)^2) in powers of q.
Euler transform of period 36 sequence [ 2, -3, -2, -1, 2, 3, 2, -1, 0, -3, 2, 1, 2, -3, -2, -1, 2, 0, 2, -1, -2, -3, 2, 1, 2, -3, 0, -1, 2, 3, 2, -1, -2, -3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = f(t) where q = exp(2 Pi i t).
a(n) = 2 * A233670(n) unless n=0.
EXAMPLE
G.f. = 1 + 2*q - 4*q^3 - 6*q^4 + 12*q^6 + 16*q^7 - 28*q^9 - 36*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^9] / EllipticTheta[ 3, 0, q^3]^2, {q, 0, n}]; (* Michael Somos, Aug 27 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^4 * eta(x^12 + A)^4 * eta(x^18 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)^10 * eta(x^9 + A)^2 * eta(x^36 + A)^2), n))};
CROSSREFS
Cf. A233670.
Sequence in context: A096984 A213723 A104601 * A319931 A192133 A244109
KEYWORD
sign
AUTHOR
Michael Somos, Dec 14 2013
STATUS
approved