OFFSET
1,4
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: ( Sum_{k>=1} k * x^k/(1 - x^k) )^3 = ( Sum_{k>=1} x^k/(1 - x^k)^2 )^3.
a(n) = Sum_{i=1..n-2} sigma(i)*A000385(n-i-1). - Chai Wah Wu, Jul 25 2024
Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / 155520. - Vaclav Kotesovec, Sep 19 2024
MAPLE
b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 3):
seq(a(n), n=1..55); # Alois P. Heinz, Jul 25 2024
PROG
(PARI) my(N=40, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, k*x^k/(1-x^k))^3))
(Python)
from sympy import divisor_sigma
def A374951(n): return (60*sum(divisor_sigma(i)*divisor_sigma(n-i, 3) for i in range(1, n))+divisor_sigma(n)*(9*n*(2*n-1)+1)-5*divisor_sigma(n, 3)*(3*n-1))//144 # Chai Wah Wu, Jul 25 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 25 2024
STATUS
approved