login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139594
Number of different n X n symmetric matrices with nonnegative entries summing to 4. Also number of symmetric oriented graphs with 4 arcs on n points.
3
0, 1, 9, 39, 116, 275, 561, 1029, 1744, 2781, 4225, 6171, 8724, 11999, 16121, 21225, 27456, 34969, 43929, 54511, 66900, 81291, 97889, 116909, 138576, 163125, 190801, 221859, 256564, 295191, 338025, 385361, 437504, 494769, 557481, 625975, 700596
OFFSET
0,3
COMMENTS
a(n) is also the number of semistandard Young tableaux over all partitions of 4 with maximal element <= n. - Alois P. Heinz, Mar 22 2012
Starting from 1 the partial sums give A244864. - J. M. Bergot, Sep 17 2016
LINKS
FORMULA
a(n) = coefficient of x^4 in 1/((1-x)^n * (1-x^2)^binomial(n,2)).
a(n) = (n^2*(7+5*n^2))/12. G.f.: x*(1+x)*(1+3*x+x^2)/(1-x)^5. [Colin Barker, Mar 18 2012]
EXAMPLE
From Michael B. Porter, Sep 18 2016: (Start)
The nine 2 X 2 matrices summing to 4 are:
4 0 3 0 2 0 1 0 0 0 2 1 1 1 0 1 0 2
0 0 0 1 0 2 0 3 0 4 1 0 1 1 1 2 2 0
(End)
MAPLE
dd := proc(n, m) coeftayl(1/((1-X)^m*(1-X^2)^binomial(m, 2)), X=0, n); seq(dd(4, m), m=0..N);
MATHEMATICA
gf[k_] := 1/((1-x)^k (1-x^2)^(k(k-1)/2));
T[n_, k_] := SeriesCoefficient[gf[k], {x, 0, n}];
a[k_] := T[4, k];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 07 2020 *)
CROSSREFS
For 3 in place of 4 this gives A005900.
Row n=4 of A210391. - Alois P. Heinz, Mar 22 2012
Partial sums of A063489.
Sequence in context: A299280 A023163 A054121 * A034263 A374951 A060929
KEYWORD
easy,nonn
AUTHOR
STATUS
approved