login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A023163
Numbers k such that Fibonacci(k) == -2 (mod k).
3
1, 9, 39, 111, 129, 159, 201, 249, 321, 471, 489, 519, 591, 681, 831, 849, 879, 921, 951, 1041, 1119, 1191, 1329, 1401, 1569, 1641, 1671, 1689, 1761, 1839, 1929, 1959, 2031, 2049, 2199, 2271, 2319, 2361, 2391, 2481, 2559, 2631, 2649, 2721, 2841, 2991, 3039
OFFSET
1,2
LINKS
MAPLE
fpp:= n -> mpow(n-1, n)[2, 2]:
M:= <<0, 1>|<1, 1>>:
mpow:= proc(n, p)
if n = 0 then <<1, 0>|<0, 1>>
elif n::even then procname(n/2, p)^2 mod p
else procname((n-1)/2, p)^2 . M mod p
fi
end proc:
select(p -> fpp(p)+2 mod p = 0, [1, seq(i, i=3..10000, 3)]); # Robert Israel, Feb 01 2017
MATHEMATICA
Join[{1}, Position[Mod[Fibonacci[#], #]-#& /@ Range[10000], -2] // Flatten] (* Jean-François Alcover, Jun 09 2020 *)
PROG
(PARI) isok(k) = Mod(fibonacci(k), k) == -2; \\ Michel Marcus, Jun 09 2020
CROSSREFS
Cf. A000045.
Sequence in context: A281381 A226449 A299280 * A054121 A139594 A034263
KEYWORD
nonn
STATUS
approved