login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362521
Number of vertex cuts in the n-web graph.
0
1, 30, 323, 3110, 27777, 237498, 1977439, 16202990, 131490509, 1060894002, 8529819531, 68439823942, 548461371993, 4392080943978, 35156984457463, 281349668446430, 2251228221924645, 18011798305060578, 144103388698943651, 1152868080218482102, 9223130638279472433
OFFSET
1,2
COMMENTS
Sequence extended to n=1 using formula/recurrence.
LINKS
Eric Weisstein's World of Mathematics, Vertex Cut
Eric Weisstein's World of Mathematics, Web Graph
Index entries for linear recurrences with constant coefficients, signature (20, -146, 480, -657, 60, 660, -400, -144, 128).
FORMULA
a(n) = 2^(3*n) - 1 - A286187(n). - Pontus von Brömssen, Apr 23 2023
a(n) = 20*a(n-1)-146*a(n-2)+480*a(n-3)-657*a(n-4)+60*a(n-5)+660*a(n-6)-400*a(n-7)-144*a(n-8)+128*a(n-9).
G.f.: x*(-1 - 10*x + 131*x^2 - 550*x^3 + 1008*x^4 - 628*x^5 + 128*x^6 - 448*x^7 + 384*x^8)/((-1 + 8*x)*(-1 + 6*x - 7*x^2 - 2*x^3 + 4*x^4)^2).
MATHEMATICA
LinearRecurrence[{20, -146, 480, -657, 60, 660, -400, -144, 128}, {1, 30, 323, 3110, 27777, 237498, 1977439, 16202990, 131490509}, 20]
CoefficientList[Series[(-1 - 10 x + 131 x^2 - 550 x^3 + 1008 x^4 - 628 x^5 + 128 x^6 - 448 x^7 + 384 x^8)/((-1 + 8 x) (-1 + 6 x - 7 x^2 - 2 x^3 + 4 x^4)^2), {x, 0, 20}], x]
With[{r = 4 + 2 # - 5 #^2 + #^3 &}, Table[8^n + n/2 - n RootSum[r, -494 #^n + 12 #1^(n + 1) + 35 #^(n + 2) &]/458 - RootSum[r, #^n &] - 1, {n, 20}]]
CROSSREFS
Cf. A286187.
Sequence in context: A134287 A141216 A159543 * A227689 A006859 A341557
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 23 2023
EXTENSIONS
More terms (based on data in A286187) from Pontus von Brömssen, Apr 23 2023
STATUS
approved