login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227689
a(n) is the least integer k such that 2^k - 1 has at least 10^n digits.
1
1, 30, 329, 3319, 33216, 332190, 3321925, 33219278, 332192807, 3321928092, 33219280946, 332192809486, 3321928094885, 33219280948871, 332192809488733, 3321928094887360, 33219280948873621, 332192809488736232, 3321928094887362345, 33219280948873623476
OFFSET
0,2
FORMULA
a(n) = ceiling(log_2(10^(10^n-1)+1)).
Limit_{n -> oo} a(n)/10^n = log_2(10) = A020862. - Alois P. Heinz, Jun 28 2021
EXAMPLE
For n = 2, A000225(328) has 99 digits and A000225(329) has 100 digits, so a(2) = 329.
PROG
(PARI) a(n) = ceil(log(10^(10^n-1)+1)/log(2)); \\ Michel Marcus, Jun 28 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Olivier de Mouzon, Jul 19 2013
EXTENSIONS
a(7)-a(19) from Alois P. Heinz, Jun 28 2021
STATUS
approved