login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A369295 a(n) is the first number k such that Omega(k) = n and Omega(n - 1) = Omega(n + 1) = n + 1. 0
5, 51, 343, 3185, 75951, 1780624, 16825375, 212781249, 4613781249, 74239460225, 858245781249, 46055847109375, 487028345781249 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n) is the first k such that k - 1, k and k + 1 have n + 1, n and n + 1 prime factors respectively, counted with multiplicity.
From David A. Corneth, Jan 19 2024: (Start)
a(9) <= 4613781249. This value is exact if 27000 divides lcm(a(9)-1, a(9), a(9)+1). Same goes for a(10) <= 104168181249.
a(11) <= 858245781249 if 810000 divides lcm(a(11)-1, a(11), a(11)+1). a(12) <= 46055847109375 if 24300000 divides lcm(a(12)-1, a(12), a(12)+1). (End)
LINKS
EXAMPLE
a(3) = 343 because 343 = 7^3 has 3 prime factors while 342 = 2 * 3^2 * 19 and 344 = 2^3 * 43 each have 4, and 343 is the least number that works.
MAPLE
V:= Vector(8): count:= 0:
b:= 0: c:= 1:
for n from 3 do
a:= b; b:= c; c:= numtheory:-bigomega(n);
if a = b+1 and c = b+1 and b <= 8 and V[b] = 0 then
V[b]:= n-1; count:= count+1; if count = 8 then break fi;
fi
od:
convert(V, list);
PROG
(PARI)
generate(A, B, n) = A=max(A, 2^n); (f(m, p, k) = my(list=List()); if(k==1, forprime(q=max(p, ceil(A/m)), B\m, my(t=m*q); if(bigomega(t+2) == n && bigomega(t+1) == n-1, listput(list, t+1))), forprime(q = p, sqrtnint(B\m, k), list=concat(list, f(m*q, q, k-1)))); list); vecsort(Vec(f(1, 2, n)));
a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n+1)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Jan 19 2024
CROSSREFS
Sequence in context: A208997 A041043 A362516 * A145641 A317782 A342407
KEYWORD
nonn,more
AUTHOR
Zak Seidov and Robert Israel, Jan 18 2024
EXTENSIONS
a(9)-a(11) from Daniel Suteu, Jan 19 2024
a(12)-a(13) from Martin Ehrenstein, Feb 12 2024
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 17:32 EDT 2024. Contains 374459 sequences. (Running on oeis4.)