login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369296
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x^3)^2 ).
4
1, 1, 2, 7, 24, 84, 315, 1225, 4859, 19646, 80739, 336050, 1413587, 6000777, 25674462, 110598855, 479286932, 2088036939, 9139604421, 40174594432, 177267942918, 784889441217, 3486198469890, 15529021825140, 69355660644738, 310509670642611, 1393296782758244
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(2*n-3*k,n-3*k).
a(n) = (1/(n+1)) * [x^n] 1/( (1-x) * (1-x^3)^2 )^(n+1). - Seiichi Manyama, Feb 14 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x^3)^2)/x)
(PARI) a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
CROSSREFS
Cf. A370274.
Sequence in context: A000777 A369266 A144170 * A297345 A052986 A053368
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 18 2024
STATUS
approved