login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053368
a(n) = (5n+2)*C(n) where C(n) = Catalan numbers (A000108).
1
2, 7, 24, 85, 308, 1134, 4224, 15873, 60060, 228514, 873392, 3350802, 12896744, 49774300, 192559680, 746503065, 2899328940, 11279096730, 43942760400, 171424529430, 669540282840, 2617890571140, 10246047127680, 40137974797050, 157368305973528, 617467192984404, 2424490605524064
OFFSET
0,1
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
FORMULA
From R. J. Mathar, Feb 13 2015: (Start)
3*(n+1)*a(n) + 2*(-7*n-2)*a(n-1) + 4*(2*n-3)*a(n-2) = 0.
-(n+1)*(5*n-3)*a(n) + 2*(5*n+2)*(2*n-1)*a(n-1) = 0. (End)
G.f.: (3 - 2*x - 3*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Amiram Eldar, Jul 08 2023
MATHEMATICA
Table[(5*n + 2)*CatalanNumber[n], {n, 0, 50}] (* G. C. Greubel, May 25 2018 *)
PROG
(PARI) for(n=0, 30, print1(((5*n+2)/(n+1))*binomial(2*n, n), ", ")) \\ G. C. Greubel, May 25 2018
(Magma) [((5*n+2)/(n+1))*Binomial(2*n, n): n in [0..30]]; // G. C. Greubel, May 25 2018
CROSSREFS
Sequence in context: A369296 A297345 A052986 * A141753 A014300 A128086
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 06 2000
EXTENSIONS
Terms a(21) onward added by G. C. Greubel, May 25 2018
STATUS
approved