login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369266
Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^3)^2 ).
3
1, 1, 2, 7, 24, 84, 313, 1209, 4769, 19166, 78253, 323570, 1352122, 5701467, 24229122, 103663575, 446163435, 1930390329, 8391341664, 36630504952, 160509484616, 705750073063, 3112865367660, 13769327908980, 61066953746400, 271488240652950, 1209671359828154
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(2*n-3*k,n-3*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x) * (1+x^3)^2 )^(n+1). - Seiichi Manyama, Feb 14 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^3)^2)/x)
(PARI) a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 18 2024
STATUS
approved