OFFSET
1,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
FORMULA
G.f.: -1/2 + 1/(2*(1-2*x)*sqrt(1-4*x)). - Vladeta Jovovic, Dec 14 2003
Recurrence: n*a(n) = 2*(3*n-1)*a(n-1) - 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 4^n/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
a(n) = 2^(n-1) + Sum_{k=1..n} 2^(n-k)*C(2*k-1,k). - Vaclav Kotesovec, Oct 28 2012
2*a(n) = Sum_{k=0..n} C(2k,k)*C(2(n-k),n-k)/C(n,k). - Zhi-Wei Sun, Oct 14 2019
EXAMPLE
a(3) = 24.
MATHEMATICA
f[n_] := 2^(n - 1)Integrate[(1 + x^2)^n, {x, 0, 1}] / Integrate[(1 - x^2)^n, {x, 0, 1}]; Table[ f[n], {n, 1, 24}] (* Robert G. Wilson v, Feb 27 2004 *)
Table[2^(n-1)+Sum[2^(n-k)*Binomial[2*k-1, k], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 28 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(-1/2+1/(2*(1-2*x)*sqrt(1-4*x))) \\ Joerg Arndt, May 10 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)excite.com), Nov 24 2003
EXTENSIONS
More terms from Robert G. Wilson v, Feb 27 2004
STATUS
approved