The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A369265 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3) ). 5
 1, 2, 7, 31, 153, 806, 4439, 25250, 147193, 874732, 5279635, 32276245, 199439761, 1243633652, 7815804351, 49455190791, 314807497953, 2014530780524, 12952334769203, 83628832755779, 542022781854953, 3525150296312984, 22998642171764363, 150478455899387966 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..23. P. Bala, Fractional iteration of a series inversion operator Index entries for reversions of series FORMULA a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(3*n-3*k+1,n-3*k). D-finite with recurrence 16*(n+1)*(2*n+1)*a(n) +4*(-89*n^2+15*n+2)*a(n-1) +3*(345*n^2-603*n+274)*a(n-2) +18*(-41*n^2+45*n+94)*a(n-3) +54*(-4*n^2+57*n-137)*a(n-4) +486*(n-4)*(n-5)*a(n-5) -243*(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Jan 25 2024 a(n) = (1/(n+1)) * [x^n] ( 1/(1-x)^2 * (1+x^3) )^(n+1). - Seiichi Manyama, Feb 14 2024 MAPLE A369265 := proc(n) add(binomial(n+1, k) * binomial(3*n-3*k+1, n-3*k), k=0..floor(n/3)) ; %/(n+1) ; end proc; seq(A369265(n), n=0..70) ; # R. J. Mathar, Jan 25 2024 PROG (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^3))/x) (PARI) a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1); CROSSREFS Cf. A369267, A369269. Cf. A071969, A370247. Sequence in context: A126033 A369622 A323632 * A369297 A256672 A366052 Adjacent sequences: A369262 A369263 A369264 * A369266 A369267 A369268 KEYWORD nonn AUTHOR Seiichi Manyama, Jan 18 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 17:48 EDT 2024. Contains 374459 sequences. (Running on oeis4.)