login
A369292
Array read by downward antidiagonals: A(n,k) = -A(n-1,k) + (k+1)*A(n-1,k+1) + A(n-1,k+2) with A(0,k) = 1, n >= 0, k >= 0.
1
1, 1, 1, 1, 2, 4, 1, 3, 8, 18, 1, 4, 14, 42, 108, 1, 5, 22, 84, 276, 780, 1, 6, 32, 150, 612, 2160, 6600, 1, 7, 44, 246, 1212, 5220, 19560, 63840, 1, 8, 58, 378, 2196, 11280, 50880, 200760, 693840, 1, 9, 74, 552, 3708, 22260, 118560, 556920, 2299920, 8361360
OFFSET
0,5
EXAMPLE
Array begins:
=====================================================
n\k| 0 1 2 3 4 5 6 ...
---+-------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 2 3 4 5 6 7 ...
2 | 4 8 14 22 32 44 58 ...
3 | 18 42 84 150 246 378 552 ...
4 | 108 276 612 1212 2196 3708 5916 ...
5 | 780 2160 5220 11280 22260 40800 70380 ...
6 | 6600 19560 50880 118560 252120 496920 919200 ...
...
PROG
(PARI)
A(m, n=m)={my(r=vectorv(m+1), v=vector(n+2*m+1, k, 1)); r[1] = v[1..n+1];
for(i=1, m, v=vector(#v-2, k, -v[k] + k*v[k+1] + v[k+2]); r[1+i] = v[1..n+1]); Mat(r)}
{ A(6) } \\ Andrew Howroyd, Jan 24 2024
CROSSREFS
Column k=0 is A144085.
Rows n=0..2 are A000012, A000027(n+1), A014206(n+1).
Sequence in context: A366062 A208526 A275895 * A158613 A360859 A209573
KEYWORD
nonn,tabl,changed
AUTHOR
Mikhail Kurkov, Jan 24 2024
STATUS
approved