OFFSET
0,8
COMMENTS
The sequence is given by the successive triples (1, -m, -m^2) with m = 0, 1, 2, 3, ... - Bruno Berselli, Aug 23 2018
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1).
FORMULA
From Bruno Berselli, Aug 23 2018: (Start)
G.f.: (1 - 2*x^3 - x^4 - x^5 + x^6 + x^7 - x^8)/((1 - x)^3*(1 + x + x^2)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>8.
a(n) = -(-1)^((n+1) mod 3)*floor(n/3)^(n mod 3). (End)
EXAMPLE
As array:
1, 0, 0;
1, -1, -1;
1, -2, -4;
1, -3, -9;
1, -4, -16;
1, -5, -25;
1, -6, -36;
1, -7, -49;
1, -8, -64;
1, -9, -81;
1, -10, -100 etc.
MATHEMATICA
CoefficientList[Series[(1-2x^3-x^4-x^5+x^6+x^7-x^8)/(1-x^3)^3, {x, 0, 100}], x] (* or *) LinearRecurrence[{0, 0, 3, 0, 0, -3, 0, 0, 1}, {1, 0, 0, 1, -1, -1, 1, -2, -4}, 100] (* Harvey P. Dale, Nov 22 2021 *)
PROG
(Magma) &cat [[1, -n, -n^2]: n in [0..25]]; // Bruno Berselli, Aug 23 2018
CROSSREFS
KEYWORD
sign,tabf,easy,less
AUTHOR
Roger L. Bagula, Mar 22 2009
EXTENSIONS
Edited, new name, and a(1)-a(2) added by Bruno Berselli, Aug 23 2018
STATUS
approved