login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158616
Table of expansion coefficients [x^m] of the Rayleigh polynomial of index 2n.
3
1, 1, 2, 11, 5, 38, 14, 946, 1026, 362, 42, 4580, 4324, 1316, 132, 202738, 311387, 185430, 53752, 7640, 429, 3786092, 6425694, 4434158, 1596148, 317136, 33134, 1430, 261868876, 579783114, 547167306, 287834558, 92481350, 18631334, 2305702
OFFSET
1,3
LINKS
Matthew House, Table of n, a(n) for n = 1..10015 (rows 1..93)
Nand Kishore, The Rayleigh Polynomial, Proc. AMS 15 (6) (1964) 911-917.
Nand Kishore, The Rayleigh Function, Proc. AMS 14 (4) (1963) 527-533.
D. H. Lehmer, Zeros of the Bessel function J_{nu}(x), Math. Comp. 1 (1945), 405-407. Gives first 12 rows.
D. H. Lehmer, Zeros of the Bessel function J_{nu}(x), Math. Comp., 1 (1943-1945), 405-407. Gives first 12 rows. [Annotated scanned copy]
EXAMPLE
The polynomials of low index are Phi(2,x)=Phi(4,x) = 1 ; Phi(6,x)=2 ; Phi(8,x)=11+5x ; Phi(10,x)=38+14x ; Phi(12,x)=946+1026x+362x^2+42x^3 ;
Triangle begins:
1,
1,
2,
11,5,
38,14,
946,1026,362,42,
4580,4324,1316,132,
202738,311387,185430,53752,7640,429,
...
MAPLE
sig2n := proc(n, nu) option remember ; if n = 1 then 1/4/(nu+1) ; else add( procname(k, nu)*procname(n-k, nu), k=1..n-1)/(nu+n) ; simplify(%) ; fi; end:
Phi2n := proc(n, nu) local k ; 4^n*mul( (nu+k)^(floor(n/k)), k=1..n)*sig2n(n, nu) ; factor(%) ; end:
for n from 1 to 14 do rpoly := Phi2n(n, nu) ; print(coeffs(rpoly)) ; od:
MATHEMATICA
sig2n[n_, nu_] := sig2n[n, nu] = If[n == 1, 1/4/(nu + 1), Sum[sig2n[k, nu]*sig2n[n - k, nu], {k, 1, n - 1}]/(nu + n)] // Simplify;
Phi2n[n_, nu_] := 4^n*Product[(nu + k)^Floor[n/k], {k, 1, n}]*sig2n[n, nu];
T[n_] := CoefficientList[Phi2n[n, x], x];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 01 2023, after R. J. Mathar *)
CROSSREFS
Cf. A000992, A000175 (first column), A000331 (2nd column).
Sequence in context: A087552 A124688 A339807 * A127821 A114724 A226219
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, Mar 22 2009
STATUS
approved