login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158612
A real part quaternion-Hadamard matrix self-similarity coefficient triangle: m(n)=real(quaternion_Hadamard(2^n)).
0
-2, 0, 1, 0, -3, -3, 1, 1, 0, 0, 0, 0, 0, 3, -3, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17496, 11664, -31752, -12420, 20196, 4392, -5634, -660, 744, 43, -45, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
2,1
COMMENTS
Row sums are: {-1, -4, 0, 4024, -2914324434151973883590000,...}.
Example Matrix:
M(8)={{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 1},
{0, 0, 0, 0, 0, 0, 1, 1},
{0, 0, 0, 0, 0, 1, 1, -1}}.
I originally did this quaternion Hadamard to see the polynomial-based fractal it generated.
FORMULA
m(n) = real(quaternion_Hadamard(2^n));
out_(n,m) = coefficients(characteristicpolynomial(m(n),x0,x).
EXAMPLE
{-2, 0, 1},
{0, -3, -3, 1, 1},
{0, 0, 0, 0, 0, 3, -3, -1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17496, 11664, -31752, -12420, 20196, 4392, -5634, -660, 744, 43, -45, -1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 203971779462337250790998016, -90654124205483222573776896, -995516586182436129374994432, 229036898680674304357564416, 2014940244214672189531619328, -225470354585179660732071936, -2303348875675346491762802688, 102107389232404032780238848, 1699141611174245837080363008, -7907928593626742735241216, -871514449884897217825996800, -16326680701779539939819520, 325779479171150315757502464, 10471821132401396786331648, -91611153839241190921863168,
-3593418949147507007422464, 19815151480978064696229888, 836197796503567596994560, -3349274996676445308297216, -142297960404623362117632, 447400068863581245616128, 18352005269645607340032, -47598603085735882767360, -1829483824657528885248, 4052887122252867183360, 142575166258114943232, -276854228032626385920, -8737819537318410816, 15174075363259578048, 421904697273806976, -665838783895241088, -16022240352510912, 23281915965903936, 475961085645264, -643775174648784, -10952855889552, 13917185697600, 192271111392, -231326539824, -2514892444, 2884675668, 23628896, -25995912, -150088, 159224, 575, -591, -1, 1}
MATHEMATICA
Clear[HadamardMatrix, c, x, y, z, m, I0, J, K];
MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]];
KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2},
M1 = M;
N1 = N;
LM = Length[M1];
LN = Length[N1];
Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}];
Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}];
N2 = {};
Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}];
N2 = Flatten[N2];
Partition[N2, LM*LN, LM*LN]]
HadamardMatrix[2] := {{1, 1}, {1, -1}};
HadamardMatrix[4] := {{I0, I0, J, J}, {I0, -1, J, -1}, {K, K, -1, -1}, {K, -1, -1, 1}};
HadamardMatrix[n_] := Module[{m}, m = If[n == 8, {{I0, J}, {K, -1}}, {{1, 1, 1, 1}, {1, -I0, 1, -J}, {1, 1, -1, -1}, {1, -K, -1, 1}}]; KroneckerProduct[m, HadamardMatrix[n/2]]];
c = Table[HadamardMatrix[2^n], {n, 1, 5}] /. K -> 0 /. J -> 0 /. I0 -> 0;
Table[CoefficientList[CharacteristicPolynomial[ c[[n]], z], z], {n, 1, Length[c]}];
Flatten[%]
Table[Apply[Plus, CoefficientList[CharacteristicPolynomial[c[[n]], z], z]], {n, 1, Length[c]}];
CROSSREFS
Sequence in context: A244417 A324811 A086780 * A073430 A371093 A053389
KEYWORD
sign,tabf
AUTHOR
STATUS
approved