login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324811
a(n) = A324728(n) - A061395(n).
2
0, 0, 0, 2, 0, 1, 0, 3, 2, 1, 0, 2, 0, 1, 2, 4, 0, 1, 0, 2, 2, 1, 0, 3, 2, 1, 3, 2, 0, 3, 0, 5, 1, 1, 2, 4, 0, 1, 2, 3, 0, 1, 0, 2, 3, 1, 0, 4, 2, 1, 1, 2, 0, 1, 2, 3, 2, 1, 0, 2, 0, 1, 1, 6, 1, 2, 0, 2, 1, 1, 0, 5, 0, 1, 3, 2, 2, 1, 0, 4, 5, 1, 0, 3, 2, 1, 2, 3, 0, 4, 2, 2, 1, 1, 2, 5, 0, 1, 3, 4, 0, 2, 0, 3, 3
OFFSET
1,4
COMMENTS
The first negative term is a(182) = -6, as A324712(182) = 0 and 182 = 2*7*13 = prime(1) * prime(4) * prime(6).
The next negative term after that is a(198) = -4, as A324712(198) = 1, and 198 = 2 * 3^2 * 11 = prime(1) * prime(2)^2 * prime(5).
There are only 161 negative terms among the first 10000 terms.
FORMULA
a(n) = A324728(n) - A061395(n).
a(p) = 0 for all primes p.
PROG
(PARI)
A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
A324712(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A323243(d)))); (v); }; \\ Needs also code from A323243.
A000523(n) = if( n<1, 0, #binary(n) - 1); \\ From A000523
A324728(n) = { my(k=A324712(n)); if(!k, k, (1+A000523(k))); };
A324811(n) = (A324728(n) - A061395(n));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Mar 17 2019
STATUS
approved