login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A324810
Sum of A324828(d) over the divisors d of n.
2
0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 1, 4, 1, 4, 3, 2, 1, 4, 2, 2, 2, 4, 1, 4, 1, 2, 2, 2, 2, 6, 1, 2, 2, 4, 1, 4, 1, 4, 4, 2, 1, 4, 2, 5, 2, 4, 1, 4, 3, 4, 2, 2, 1, 6, 1, 2, 4, 2, 2, 4, 1, 4, 2, 4, 1, 6, 1, 2, 4, 4, 2, 4, 1, 4, 2, 2, 1, 8, 2, 2, 2, 4, 1, 8, 3, 4, 2, 2, 2, 4, 1, 3, 4, 6, 1, 4, 1, 4, 4
OFFSET
1,4
COMMENTS
Inverse Möbius transform of A324828.
FORMULA
a(n) = Sum_{d|n} A324828(d).
a(p) = 1 for all primes p.
A000035(a(n)) = A324823(n) = A323243(n) mod 2.
PROG
(PARI)
A324712(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A323243(d)))); (v); }; \\ Needs also code from A323243.
A324828(n) = (A324712(n)%2);
A324810(n) = sumdiv(n, d, A324828(d));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 17 2019
STATUS
approved