login
A041042
Numerators of continued fraction convergents to sqrt(27).
3
5, 26, 265, 1351, 13775, 70226, 716035, 3650401, 37220045, 189750626, 1934726305, 9863382151, 100568547815, 512706121226, 5227629760075, 26650854921601, 271736178976085, 1385331749802026, 14125053676996345
OFFSET
0,1
COMMENTS
Subset of |A002316| (conjectured).
FORMULA
G.f.: (-x^3+5x^2+26x+5)/(x^4-52x^2+1).
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((-5-3*sqrt(3))/(26+15*sqrt(3))^n+(-5+3*sqrt(3))*(26+15*sqrt(3))^n)/2.
a1(n) = (1/(26+15*sqrt(3))^n+(26+15*sqrt(3))^n)/2. (End)
MATHEMATICA
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[27], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011*)
Numerator/@Convergents[Sqrt[27], 20] (* Harvey P. Dale, Jul 21 2011 *)
CoefficientList[Series[(- x^3 + 5 x^2 + 26 x + 5)/(x^4 - 52 x^2 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 28 2013 *)
a0[n_] := (-5-3*Sqrt[3]+(-5+3*Sqrt[3])*(26+15*Sqrt[3])^(2*n))/(2*(26+15*Sqrt[3])^n) // Simplify
a1[n_] := (1+(26+15*Sqrt[3])^(2*n))/(2*(26+15*Sqrt[3])^n) // Simplify
Flatten[MapIndexed[{a0[#], a1[#]}&, Range[10]]] (* Gerry Martens, Jul 10 2015 *)
LinearRecurrence[{0, 52, 0, -1}, {5, 26, 265, 1351}, 30] (* Harvey P. Dale, Dec 12 2015 *)
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
STATUS
approved