login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086596
An invariant of the set {Log(2), Log(3), Log(5),..., Log(Prime(2n)), Log(Prime(2n+1))}.
2
1, -1, 3, -8, 22, -53, 158, -481, 1471, -4621, 14612
OFFSET
1,3
COMMENTS
This sequence comes from a corrected and extended example in the paper by Besser and Moree.
LINKS
A. Besser, P. Moree, On an invariant related to a linear inequality, Arch. Math. 79: pp. 463-471
D. Gijswijt and P. Moree, A set-theoretic invariant, arXiv:math/0309318 (2003)
FORMULA
a(t)=(-1)^t/2 sum_{d|p_1...p_t, d <= sqrt{p_1...p_t} mu(d).
MATHEMATICA
Invariant[a_List] := Module[{i=1, j=2, xMin, xMax, aa, n, invar=0, signs, x}, xMin=Abs[a[[i]]-a[[j]]]; xMax=a[[i]]+a[[j]]; aa=Complement[a, {a[[i]], a[[j]]}]; n=Length[aa]; Do[signs=(2*IntegerDigits[k, 2, n]-1); x=aa.signs; If[x>xMin&&x<xMax, invar+=Times@@signs], {k, 0, 2^n-1}]; invar]; Table[theSet=Table[N[Log[Prime[i]]], {i, 1, n}]; Invariant[theSet], {n, 3, 23, 2}]
CROSSREFS
Cf. A068101.
Sequence in context: A202192 A027211 A027235 * A036882 A374773 A020962
KEYWORD
hard,sign,more
AUTHOR
T. D. Noe, Aug 01 2003
STATUS
approved