login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

An invariant of the set {Log(2), Log(3), Log(5),..., Log(Prime(2n)), Log(Prime(2n+1))}.
2

%I #13 Apr 03 2015 18:56:15

%S 1,-1,3,-8,22,-53,158,-481,1471,-4621,14612

%N An invariant of the set {Log(2), Log(3), Log(5),..., Log(Prime(2n)), Log(Prime(2n+1))}.

%C This sequence comes from a corrected and extended example in the paper by Besser and Moree.

%H A. Besser, P. Moree, <a href="http://www.birkhauser.ch/journals/1300/papers/2079006/20790463.pdf">On an invariant related to a linear inequality</a>, Arch. Math. 79: pp. 463-471

%H D. Gijswijt and P. Moree, <a href="http://arxiv.org/abs/math/0309318">A set-theoretic invariant</a>, arXiv:math/0309318 (2003)

%F a(t)=(-1)^t/2 sum_{d|p_1...p_t, d <= sqrt{p_1...p_t} mu(d).

%t Invariant[a_List] := Module[{i=1, j=2, xMin, xMax, aa, n, invar=0, signs, x}, xMin=Abs[a[[i]]-a[[j]]]; xMax=a[[i]]+a[[j]]; aa=Complement[a, {a[[i]], a[[j]]}]; n=Length[aa]; Do[signs=(2*IntegerDigits[k, 2, n]-1); x=aa.signs; If[x>xMin&&x<xMax, invar+=Times@@signs], {k, 0, 2^n-1}]; invar]; Table[theSet=Table[N[Log[Prime[i]]], {i, 1, n}]; Invariant[theSet], {n, 3, 23, 2}]

%Y Cf. A068101.

%K hard,sign,more

%O 1,3

%A _T. D. Noe_, Aug 01 2003