login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154243
Numerators of the coefficients of the polynomials 1/Sum_{n>=1} x^(n-1)/((2*n)!/n!) = 2*exp(-x/4)*sqrt(x)/ (sqrt(Pi)*erf(sqrt(x)/2)).
0
2, -1, 1, -1, -1, 1, 23, -23, 157, 97051, -1614583, -331691, 1418383997, -5720927, -1868325937, 1207461869239, 118209298450003, -3069893653, -14303719087308533, 65108016166881997, -310766859240153209819
OFFSET
0,1
FORMULA
a(n) = numerator([x^n]*(1/Sum_{k>=1} x^(k-1)/((2*k)!/k!)).
a(n) = numerator([x^n]*2*exp(-x/4)*sqrt(x)/(sqrt(Pi)*erf(sqrt(x)/2)))).
MATHEMATICA
p[x] = FullSimplify[1/Sum[x^(n - 1)/((2*n)!/n!), {n, 1, Infinity}]];
Table[ Numerator[SeriesCoefficient[Series[p[x], {x, 0, 30}], n]], {n, 0, 30}]
PROG
(PARI) seq(n)={[numerator(t) | t<-Vec(1/sum(k=1, n, x^(k-1)/((2*k)!/k!), O(x^n)))]} \\ Andrew Howroyd, Nov 02 2019
CROSSREFS
Sequence in context: A256671 A327156 A114171 * A326698 A299432 A252911
KEYWORD
sign,frac
AUTHOR
Roger L. Bagula, Jan 05 2009
STATUS
approved