The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154242 Denominators of the coefficients of the polynomials 1/Sum_{n>=1} x^(n-1)/((2*n)!/n!) = 2*exp(-x/4)*sqrt(x)/ (sqrt(Pi)*erf(sqrt(x)/2)). 1
 1, 3, 45, 1890, 56700, 748440, 10216206000, 8756748000, 2841962760000, 24946749107280000, 8232427205402400000, 103279541304139200000, 3101484625363300176000000, 1431454442475369312000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..250 FORMULA a(n) = denominator([x^n]*(1/Sum_{k>=1} x^(k-1)/((2*k)!/k!)). a(n) = denominator([x^n]*2*exp(-x/4)*sqrt(x)/(sqrt(Pi)*erf(sqrt(x)/2)))). MATHEMATICA p[x] := FullSimplify[1/Sum[x^(n - 1)/((2*n)!/n!), {n, 1, Infinity}]]; Table[ Denominator[SeriesCoefficient[Series[p[x], {x, 0, 30}], n]], {n, 0, 30}] Table[Denominator[SeriesCoefficient[Series[2*Exp[-x/4]*Sqrt[x]/(Sqrt[Pi]*Erf[Sqrt[x]/2]), {x, 0, 30}], n]], {n, 0, 50}] (* G. C. Greubel, Sep 07 2016 *) PROG (PARI) seq(n)={[denominator(t) | t<-Vec(1/sum(k=1, n, x^(k-1)/((2*k)!/k!), O(x^n)))]} \\ Andrew Howroyd, Nov 02 2019 CROSSREFS Sequence in context: A012494 A012780 A072503 * A331710 A283698 A163002 Adjacent sequences:  A154239 A154240 A154241 * A154243 A154244 A154245 KEYWORD nonn,frac AUTHOR Roger L. Bagula, Jan 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 08:16 EST 2021. Contains 349479 sequences. (Running on oeis4.)