login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154249 a(n) = ( (8 + sqrt(7))^n - (8 - sqrt(7))^n )/(2*sqrt(7)). 1
1, 16, 199, 2272, 25009, 270640, 2904727, 31049152, 331216993, 3529670224, 37595354983, 400334476960, 4262416397329, 45379597170544, 483115820080951, 5143216082574208, 54753855576573121, 582898372518440080 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

lim_{n -> infinity} a(n)/a(n-1) = 8 + sqrt(7) = 10.6457513110....

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..750

Index entries for linear recurrences with constant coefficients, signature (16, -57).

FORMULA

From Philippe Deléham, Jan 06 2009: (Start)

a(n) = 16*a(n-1)-57*a(n-2) for n>1, with a(0)=0, a(1)=1.

G.f.: x/(1 - 16*x + 57*x^2). (End)

E.g.f.: (1/sqrt(7))*exp(8*x)*sinh(sqrt(7)*x). - G. C. Greubel, Sep 08 2016

MAPLE

seq(expand((8+sqrt(7))^n-(8-sqrt(7))^n)/sqrt(28), n = 1 .. 20); # Emeric Deutsch, Jan 08 2009

MATHEMATICA

Join[{a=1, b=16}, Table[c=16*b-57*a; a=b; b=c, {n, 40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)

LinearRecurrence[{16, -57}, {1, 16}, 25] (* or *) Table[( (8 + sqrt(7))^n - (8 - sqrt(7))^n )/(2*sqrt(7)), {n, 1, 25}] (* G. C. Greubel, Sep 08 2016 *)

PROG

(MAGMA) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-7); S:=[ ((8+r)^n-(8-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009

CROSSREFS

Cf. A010465 (decimal expansion of square root of 7).

Sequence in context: A016226 A154240 A081679 * A226869 A257289 A125451

Adjacent sequences:  A154246 A154247 A154248 * A154250 A154251 A154252

KEYWORD

nonn

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

EXTENSIONS

Extended by Emeric Deutsch and Klaus Brockhaus, Jan 08 2009

Edited by Klaus Brockhaus, Oct 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 20:00 EDT 2019. Contains 325056 sequences. (Running on oeis4.)