login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257286
a(n) = 5*6^n - 4*5^n.
7
1, 10, 80, 580, 3980, 26380, 170780, 1087180, 6835580, 42575980, 263268380, 1618672780, 9907349180, 60420657580, 367406757980, 2228854610380, 13495197974780, 81581539411180, 492540994279580, 2970504754739980, 17899322473752380
OFFSET
0,2
COMMENTS
First differences of 6^n - 5^n = A005062.
a(n-1) is the number of numbers with n digits having the largest digit equal to 5. Or, equivalently, number of n-letter words over a 6-letter alphabet {a,b,c,d,e,f}, which must not start with the first letter of the alphabet, and in which the last letter of the alphabet must appear.
FORMULA
a(n) = 11 a(n-1) - 30 a(n-2).
G.f.: (1-x)/((1-5*x)*(1-6*x)). - Vincenzo Librandi, May 04 2015
E.g.f.: exp(5*x)*(5*exp(x) - 4). - Stefano Spezia, Nov 15 2023
MATHEMATICA
Table[5 6^n - 4 5^n, {n, 0, 30}] (* Vincenzo Librandi, May 04 2015 *)
PROG
(PARI) a(n)=5*6^n-4*5^n
(Magma) [5*6^n-4*5^n: n in [0..20]]; // Vincenzo Librandi, May 04 2015
CROSSREFS
Cf. A005062.
Coincides with A125373 only for the first terms.
Sequence in context: A036070 A374511 A377199 * A125373 A093145 A341917
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, May 03 2015
STATUS
approved