login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257293
Numbers n such that T(n) + T(n+1) + ... + T(n+12) is a square, where T = A000217 (triangular numbers).
7
3, 29, 75, 432, 998, 3624, 8310, 44717, 102443, 370269, 848195, 4561352, 10448838, 37764464, 86508230, 465213837, 1065679683, 3851605709, 8822991915, 47447250672, 108688879478, 392826018504, 899858667750, 4839154355357, 11085200027723, 40064402282349
OFFSET
1,1
COMMENTS
It is well known that T(n)+T(n+1) is always a square. T(n)+T(n+1)+T(n+2) is a square for n in A165517. T(n)+T(n+1)+T(n+2)+T(n+3) is a square for n in A202391. There is no sequence of 5, 6, 7, 8, 9 or 10 consecutive T(i)'s which sum to a square, cf. A176541. The next possible length is 11, see A116476. Then comes this sequence, corresponding to length 13.
Positive integers y in the solutions to 2*x^2-13*y^2-169*y-728 = 0. - Colin Barker, May 04 2015
FORMULA
G.f.: x*(3*x^8+7*x^7+6*x^6+26*x^5-260*x^4-357*x^3-46*x^2-26*x-3) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)). - Colin Barker, May 04 2015
MATHEMATICA
Select[Range[10^5], IntegerQ[Sqrt[(#^2+13*#+56)*13/2]]&] (* Ivan N. Ianakiev, May 04 2015 *)
LinearRecurrence[{1, 0, 0, 102, -102, 0, 0, -1, 1}, {3, 29, 75, 432, 998, 3624, 8310, 44717, 102443}, 50] (* Vincenzo Librandi, May 05 2015 *)
PROG
(PARI) for(n=0, 10^8, issquare(binomial(n+14, 3)-binomial(n+1, 3))&&print1(n", "))
(PARI) Vec(x*(3*x^8+7*x^7+6*x^6+26*x^5-260*x^4-357*x^3-46*x^2-26*x-3) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)) + O(x^100)) \\ Colin Barker, May 04 2015
(Magma) I:=[3, 29, 75, 432, 998, 3624, 8310, 44717, 102443]; [n le 9 select I[n] else Self(n-1)+102*Self(n-4)-102*Self(n-5)-Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, May 05 2015
CROSSREFS
Cf. A116476 (length 11).
Sequence in context: A031912 A119951 A296246 * A221745 A087210 A288918
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, May 04 2015
STATUS
approved