Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:46:12
%S 3,29,75,432,998,3624,8310,44717,102443,370269,848195,4561352,
%T 10448838,37764464,86508230,465213837,1065679683,3851605709,
%U 8822991915,47447250672,108688879478,392826018504,899858667750,4839154355357,11085200027723,40064402282349
%N Numbers n such that T(n) + T(n+1) + ... + T(n+12) is a square, where T = A000217 (triangular numbers).
%C It is well known that T(n)+T(n+1) is always a square. T(n)+T(n+1)+T(n+2) is a square for n in A165517. T(n)+T(n+1)+T(n+2)+T(n+3) is a square for n in A202391. There is no sequence of 5, 6, 7, 8, 9 or 10 consecutive T(i)'s which sum to a square, cf. A176541. The next possible length is 11, see A116476. Then comes this sequence, corresponding to length 13.
%C Positive integers y in the solutions to 2*x^2-13*y^2-169*y-728 = 0. - _Colin Barker_, May 04 2015
%H Colin Barker, <a href="/A257293/b257293.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,102,-102,0,0,-1,1).
%F G.f.: x*(3*x^8+7*x^7+6*x^6+26*x^5-260*x^4-357*x^3-46*x^2-26*x-3) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)). - _Colin Barker_, May 04 2015
%t Select[Range[10^5],IntegerQ[Sqrt[(#^2+13*#+56)*13/2]]&] (* _Ivan N. Ianakiev_, May 04 2015 *)
%t LinearRecurrence[{1, 0, 0, 102, -102, 0, 0, -1, 1}, {3, 29, 75, 432, 998, 3624, 8310, 44717, 102443}, 50] (* _Vincenzo Librandi_, May 05 2015 *)
%o (PARI) for(n=0,10^8,issquare(binomial(n+14,3)-binomial(n+1,3))&&print1(n","))
%o (PARI) Vec(x*(3*x^8+7*x^7+6*x^6+26*x^5-260*x^4-357*x^3-46*x^2-26*x-3) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)) + O(x^100)) \\ _Colin Barker_, May 04 2015
%o (Magma) I:=[3,29,75,432,998,3624,8310,44717,102443]; [n le 9 select I[n] else Self(n-1)+102*Self(n-4)-102*Self(n-5)-Self(n-8)+Self(n-9): n in [1..40]]; // _Vincenzo Librandi_, May 05 2015
%Y Cf. A176541, A176542, A000217, A000292, A001110, A077415.
%Y Cf. A116476 (length 11).
%K nonn,easy
%O 1,1
%A _M. F. Hasler_, May 04 2015