login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285932
Expansion of (Product_{k>0} (1 - x^k) / (1 - x^(5*k)))^5 in powers of x.
2
1, -5, 5, 10, -15, -1, -30, 50, 65, -95, -1, -170, 220, 300, -380, 0, -635, 820, 1025, -1310, 0, -2045, 2525, 3140, -3845, 2, -5780, 7070, 8565, -10405, -1, -15130, 18125, 21760, -25960, 0, -36820, 43780, 51785, -61290, 0, -85170, 100030, 117500, -137550, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A116073(k)*a(n-k) for n > 0.
Expansion of q^(5/6) * eta(q)^5 / eta(q^5)^5 in powers of q. - Michael Somos, Apr 29 2017
Expansion of f(-x)^5 / f(-x^5)^5 in powers of x where f() is a Ramanujan theta function. - Michael Somos, Apr 29 2017
Euler transform of period 5 sequence [-5, -5, -5, -5, 0, ...]. - Michael Somos, Apr 29 2017
EXAMPLE
G.f. = 1 - 5*x + 5*x^2 + 10*x^3 - 15*x^4 - x^5 - 30*x^6 + 50*x^7 + 65*x^8 - 95*x^9 + ...
G.f. = q^-5 - 5*q + 5*q^7 + 10*q^13 - 15*q^19 - q^25 - 30*q^31 + 50*q^37 + 65*q^43 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^5 / QPochhammer[ x^5]^5, {x, 0, n}]; (* Michael Somos, Apr 29 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^5 + A))^5, n))}; /* Michael Somos, Apr 29 2017 */
CROSSREFS
(Product_{k>0} (1 - x^k) / (1 - x^(m*k)))^m: A022597 (m=2), A199659 (m=3), A112143 (m=4), this sequence (m=5).
Cf. A285928.
Sequence in context: A029842 A112436 A309457 * A109064 A138506 A000728
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 29 2017
STATUS
approved