|
|
A003386
|
|
Numbers that are the sum of 8 nonzero 8th powers.
|
|
2
|
|
|
8, 263, 518, 773, 1028, 1283, 1538, 1793, 2048, 6568, 6823, 7078, 7333, 7588, 7843, 8098, 8353, 13128, 13383, 13638, 13893, 14148, 14403, 14658, 19688, 19943, 20198, 20453, 20708, 20963, 26248, 26503, 26758, 27013, 27268, 32808, 33063, 33318, 33573
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020
|
|
LINKS
|
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms form Vincenzo Librandi)
|
|
EXAMPLE
|
From David A. Corneth, Aug 01 2020: (Start)
9534597 is in the sequence as 9534597 = 2^8 + 3^8 + 3^8 + 3^8 + 5^8 + 6^8 + 6^8 + 7^8.
13209988 is in the sequence as 13209988 = 1^8 + 1^8 + 2^8 + 2^8 + 2^8 + 6^8 + 7^8 + 7^8.
19046628 is in the sequence as 19046628 = 2^8 + 2^8 + 3^8 + 4^8 + 6^8 + 7^8 + 7^8 + 7^8. (End)
|
|
MATHEMATICA
|
M = 92646056; m = M^(1/8) // Ceiling; Reap[
For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
For[g = f, g <= m, g++, For[h = g, h <= m, h++,
s = a^8 + b^8 + c^8 + d^8 + e^8 + f^8 + g^8 + h^8;
If[s <= M, Sow[s]]]]]]]]]]][[2, 1]] // Union (* Jean-François Alcover, Dec 01 2020 *)
|
|
CROSSREFS
|
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
Sequence in context: A162083 A300734 A081058 * A299328 A098275 A326920
Adjacent sequences: A003383 A003384 A003385 * A003387 A003388 A003389
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
b-file checked by R. J. Mathar, Aug 01 2020
Removed incorrect program. - David A. Corneth, Aug 01 2020
|
|
STATUS
|
approved
|
|
|
|