|
|
A004809
|
|
Numbers that are the sum of 9 positive 10th powers.
|
|
32
|
|
|
9, 1032, 2055, 3078, 4101, 5124, 6147, 7170, 8193, 9216, 59057, 60080, 61103, 62126, 63149, 64172, 65195, 66218, 67241, 118105, 119128, 120151, 121174, 122197, 123220, 124243, 125266, 177153, 178176, 179199, 180222, 181245, 182268, 183291, 236201, 237224, 238247, 239270
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
|
|
EXAMPLE
|
From David A. Corneth, Aug 03 2020: (Start)
251633402 is in the sequence as 251633402 = 1^10 + 2^10 + 2^10 + 2^10 + 5^10 + 6^10 + 6^10 + 6^10 + 6^10.
383052503 is in the sequence as 383052503 = 1^10 + 1^10 + 4^10 + 5^10 + 5^10 + 5^10 + 5^10 + 6^10 + 7^10.
626642399 is in the sequence as 626642399 = 1^10 + 1^10 + 3^10 + 3^10 + 3^10 + 4^10 + 6^10 + 7^10 + 7^10. (End)
|
|
MATHEMATICA
|
k = 9; p = 10; amax = 10^6; bmax = amax^(1/p) // Ceiling; Clear[b]; b[0] = 1; Select[Table[Total[Array[b, k]^p], {b[1], b[0], bmax}, Evaluate[ Sequence @@ Table[{b[j], b[j-1], bmax}, {j, 1, k}]]] // Flatten // Union, # <= amax&] (* Jean-François Alcover, Jul 19 2017 *)
|
|
CROSSREFS
|
Cf. A008454 (tenth powers).
Sequence in context: A228293 A197781 A197612 * A099127 A172944 A277829
Adjacent sequences: A004806 A004807 A004808 * A004810 A004811 A004812
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|