login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004822
Numbers that are the sum of 11 positive 11th powers.
31
11, 2058, 4105, 6152, 8199, 10246, 12293, 14340, 16387, 18434, 20481, 22528, 177157, 179204, 181251, 183298, 185345, 187392, 189439, 191486, 193533, 195580, 197627, 354303, 356350, 358397, 360444, 362491, 364538, 366585, 368632, 370679, 372726, 531449, 533496, 535543
OFFSET
1,1
COMMENTS
As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
EXAMPLE
From David A. Corneth, Aug 01 2020: (Start)
460807606 is in the sequence as 460807606 = 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 3^11 + 3^11 + 5^11 + 5^11 + 6^11.
795925198 is in the sequence as 795925198 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 4^11 + 4^11 + 5^11 + 6^11 + 6^11.
1504395992 is in the sequence as 1504395992 = 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 6^11 + 6^11 + 6^11 + 6^11. (End)
MATHEMATICA
M = 6347807907; m = M^(1/11) // Ceiling; Reap[
For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,
For[j = i, j <= m, j++, For[k = j, k <= m, k++,
s = a^11+b^11+c^11+d^11+e^11+f^11+g^11+h^11+i^11+j^11+k^11;
If[s <= M, Sow[s]]]]]]]]]]]]]][[2, 1]] // Union (* Jean-François Alcover, Dec 01 2020 *)
CROSSREFS
Cf. A008455.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
Sequence in context: A180587 A060885 A020519 * A265876 A078271 A272617
KEYWORD
nonn,easy
STATUS
approved