login
A004825
Numbers that are the sum of at most 3 positive cubes.
17
0, 1, 2, 3, 8, 9, 10, 16, 17, 24, 27, 28, 29, 35, 36, 43, 54, 55, 62, 64, 65, 66, 72, 73, 80, 81, 91, 92, 99, 118, 125, 126, 127, 128, 129, 133, 134, 136, 141, 152, 153, 155, 160, 179, 189, 190, 192, 197, 216, 217, 218, 224, 225, 232, 243, 244, 250, 251, 253
OFFSET
1,3
COMMENTS
Or: numbers which are the sum of 3 (not necessarily distinct) nonnegative cubes. - R. J. Mathar, Sep 09 2015
Deshouillers, Hennecart, & Landreau conjecture that this sequence has density 0.0999425... = lim_K Sum_{k=1..K} exp(c*rho(k,K)/K^2)/K where c = -gamma(4/3)^3/6 = -0.1186788..., K takes increasing values in A003418 (or, equivalently, A051451), and rho(k0,K) is the number of triples 1 <= k1,k2,k3 <= K such that k0 = k1^3 + k2^3 + k3^3 mod K. - Charles R Greathouse IV, Sep 16 2016
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Jean-Marc Deshouillers, François Hennecart, and Bernard Landreau, On the density of sums of three cubes, ANTS-VII (2006), pp. 141-155.
MAPLE
isA004825 := proc(n)
local x, y, zc ;
for x from 0 do
if 3*x^3 > n then
return false;
end if;
for y from x do
if x^3+2*y^3 > n then
break;
else
zc := n-x^3-y^3 ;
if zc >= y^3 and isA000578(zc) then
return true;
end if;
end if;
end do:
end do:
end proc:
A004825 := proc(n)
option remember;
local a;
if n = 1 then
0;
else
for a from procname(n-1)+1 do
if isA004825(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A004825(n), n=1..100) ; # R. J. Mathar, Sep 09 2015
# second Maple program:
b:= proc(n, i, t) option remember; n=0 or i>0 and t>0
and (b(n, i-1, t) or i^3<=n and b(n-i^3, i, t-1))
end:
a:= proc(n) option remember; local k;
for k from 1+ `if`(n=1, -1, a(n-1))
while not b(k, iroot(k, 3), 3) do od; k
end:
seq(a(n), n=1..100); # Alois P. Heinz, Sep 16 2016
MATHEMATICA
q=7; imax=q^3; Select[Union[Flatten[Table[x^3+y^3+z^3, {x, 0, q}, {y, x, q}, {z, y, q}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
PROG
(PARI) list(lim)=my(v=List(), k, t); for(x=0, sqrtnint(lim\=1, 3), for(y=0, min(sqrtnint(lim-x^3, 3), x), k=x^3+y^3; for(z=0, min(sqrtnint(lim-k, 3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
A003072 is a subsequence.
Cf. A004999.
Column k=3 of A336820.
Sequence in context: A191159 A047360 A378726 * A272830 A028821 A337261
KEYWORD
nonn
STATUS
approved