login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004825 Numbers that are the sum of at most 3 positive cubes. 15
0, 1, 2, 3, 8, 9, 10, 16, 17, 24, 27, 28, 29, 35, 36, 43, 54, 55, 62, 64, 65, 66, 72, 73, 80, 81, 91, 92, 99, 118, 125, 126, 127, 128, 129, 133, 134, 136, 141, 152, 153, 155, 160, 179, 189, 190, 192, 197, 216, 217, 218, 224, 225, 232, 243, 244, 250, 251, 253 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Or: numbers which are the sum of 3 (not necessarily distinct) nonnegative cubes. - R. J. Mathar, Sep 09 2015

Deshouillers, Hennecart, & Landreau conjecture that this sequence has density 0.0999425... = lim_K sum_{k=1..K} exp(c*rho(k,K)/K^2)/K where c = -gamma(4/3)^3/6 = -0.1186788..., K takes increasing values in A003418 (or, equivalently, A051451), and rho(k0,K) is the number of triples 1 <= k1,k2,k3 <= K such that k0 = k1^3 + k2^3 + k3^3 mod K. - Charles R Greathouse IV, Sep 16 2016

LINKS

T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)

Jean-Marc Deshouillers, Fran├žois Hennecart, and Bernard Landreau, On the density of sums of three cubes, ANTS-VII (2006), pp. 141-155.

Index entries for sequences related to sums of cubes

MAPLE

isA004825 := proc(n)

    local x, y, zc ;

    for x from 0 do

        if 3*x^3 > n then

            return false;

        end if;

        for y from x do

            if x^3+2*y^3 > n then

                break;

            else

                zc := n-x^3-y^3 ;

                if zc >= y^3 and isA000578(zc) then

                    return true;

                end if;

            end if;

        end do:

    end do:

end proc:

A004825 := proc(n)

    option remember;

    local a;

    if n = 1 then

        0;

    else

        for a from procname(n-1)+1 do

            if isA004825(a) then

                return a;

            end if;

        end do:

    end if;

end proc:

seq(A004825(n), n=1..100) ; # R. J. Mathar, Sep 09 2015

# second Maple program:

b:= proc(n, i, t) option remember; n=0 or i>0 and t>0

      and (b(n, i-1, t) or i^3<=n and b(n-i^3, i, t-1))

    end:

a:= proc(n) option remember; local k;

      for k from 1+ `if`(n=1, -1, a(n-1))

      while not b(k, iroot(k, 3), 3) do od; k

    end:

seq(a(n), n=1..100);  # Alois P. Heinz, Sep 16 2016

MATHEMATICA

q=7; imax=q^3; Select[Union[Flatten[Table[x^3+y^3+z^3, {x, 0, q}, {y, x, q}, {z, y, q}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)

PROG

(PARI) list(lim)=my(v=List(), k, t); for(x=0, sqrtnint(lim\=1, 3), for(y=0, min(sqrtnint(lim-x^3, 3), x), k=x^3+y^3; for(z=0, min(sqrtnint(lim-k, 3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015

CROSSREFS

A003072 is a subsequence.

Cf. A004999.

Column k=3 of A336820.

Sequence in context: A169868 A191159 A047360 * A272830 A028821 A337261

Adjacent sequences:  A004822 A004823 A004824 * A004826 A004827 A004828

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 17:46 EDT 2020. Contains 337919 sequences. (Running on oeis4.)