OFFSET
1,3
COMMENTS
Or: numbers which are the sum of 3 (not necessarily distinct) nonnegative cubes. - R. J. Mathar, Sep 09 2015
Deshouillers, Hennecart, & Landreau conjecture that this sequence has density 0.0999425... = lim_K Sum_{k=1..K} exp(c*rho(k,K)/K^2)/K where c = -gamma(4/3)^3/6 = -0.1186788..., K takes increasing values in A003418 (or, equivalently, A051451), and rho(k0,K) is the number of triples 1 <= k1,k2,k3 <= K such that k0 = k1^3 + k2^3 + k3^3 mod K. - Charles R Greathouse IV, Sep 16 2016
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Jean-Marc Deshouillers, François Hennecart, and Bernard Landreau, On the density of sums of three cubes, ANTS-VII (2006), pp. 141-155.
MAPLE
isA004825 := proc(n)
local x, y, zc ;
for x from 0 do
if 3*x^3 > n then
return false;
end if;
for y from x do
if x^3+2*y^3 > n then
break;
else
zc := n-x^3-y^3 ;
if zc >= y^3 and isA000578(zc) then
return true;
end if;
end if;
end do:
end do:
end proc:
A004825 := proc(n)
option remember;
local a;
if n = 1 then
0;
else
for a from procname(n-1)+1 do
if isA004825(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A004825(n), n=1..100) ; # R. J. Mathar, Sep 09 2015
# second Maple program:
b:= proc(n, i, t) option remember; n=0 or i>0 and t>0
and (b(n, i-1, t) or i^3<=n and b(n-i^3, i, t-1))
end:
a:= proc(n) option remember; local k;
for k from 1+ `if`(n=1, -1, a(n-1))
while not b(k, iroot(k, 3), 3) do od; k
end:
seq(a(n), n=1..100); # Alois P. Heinz, Sep 16 2016
MATHEMATICA
q=7; imax=q^3; Select[Union[Flatten[Table[x^3+y^3+z^3, {x, 0, q}, {y, x, q}, {z, y, q}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
PROG
(PARI) list(lim)=my(v=List(), k, t); for(x=0, sqrtnint(lim\=1, 3), for(y=0, min(sqrtnint(lim-x^3, 3), x), k=x^3+y^3; for(z=0, min(sqrtnint(lim-k, 3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved