login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004999
Sums of two nonnegative cubes.
26
0, 1, 2, 8, 9, 16, 27, 28, 35, 54, 64, 65, 72, 91, 125, 126, 128, 133, 152, 189, 216, 217, 224, 243, 250, 280, 341, 343, 344, 351, 370, 407, 432, 468, 512, 513, 520, 539, 559, 576, 637, 686, 728, 729, 730, 737, 756, 793, 854, 855, 945, 1000, 1001
OFFSET
1,3
LINKS
Kevin A. Broughan, Characterizing the sum of two cubes, J. Integer Seqs., Vol. 6, 2003.
Samuel S. Wagstaff, Jr., Equal Sums of Two Distinct Like Powers, J. Int. Seq., Vol. 25 (2022), Article 22.3.1.
MATHEMATICA
Union[(#[[1]]^3+#[[2]]^3)&/@Tuples[Range[0, 20], {2}]] (* Harvey P. Dale, Dec 04 2010 *)
PROG
(PARI) is(n)=my(k1=ceil((n-1/2)^(1/3)), k2=floor((4*n+1/2)^(1/3)), L); fordiv(n, d, if(d>=k1 && d<=k2 && denominator(L=(d^2-n/d)/3)==1 && issquare(d^2-4*L), return(1))); 0
list(lim)=my(v=List()); for(x=0, (lim+.5)^(1/3), for(y=0, min(x, (lim-x^3)^(1/3)), listput(v, x^3+y^3))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Jun 12 2012
(PARI) is(n)=my(L=sqrtnint(n-1, 3)+1, U=sqrtnint(4*n, 3)); fordiv(n, m, if(L<=m&m<=U, my(ell=(m^2-n/m)/3); if(denominator(ell)==1&&issquare(m^2-4*ell), return(1)))); 0 \\ Charles R Greathouse IV, Apr 16 2013
(PARI) T=thueinit('z^3+1);
is(n)=n==0 || #select(v->min(v[1], v[2])>=0, thue(T, n))>0 \\ Charles R Greathouse IV, Nov 29 2014
(Haskell)
a004999 n = a004999_list !! (n-1)
a004999_list = filter c2 [1..] where
c2 x = any (== 1) $ map (a010057 . fromInteger) $
takeWhile (>= 0) $ map (x -) $ tail a000578_list
-- Reinhard Zumkeller, Dec 20 2013
CROSSREFS
Subsequence of A045980; A003325 is a subsequence.
Cf. A000578, A004825, A010057, A373972 (characteristic function).
Indices of nonzero terms in A025446.
Sequence in context: A226825 A367984 A046679 * A105125 A230314 A220263
KEYWORD
nonn,easy,nice
STATUS
approved