Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Jul 02 2024 07:23:35
%S 0,1,2,8,9,16,27,28,35,54,64,65,72,91,125,126,128,133,152,189,216,217,
%T 224,243,250,280,341,343,344,351,370,407,432,468,512,513,520,539,559,
%U 576,637,686,728,729,730,737,756,793,854,855,945,1000,1001
%N Sums of two nonnegative cubes.
%H T. D. Noe, <a href="/A004999/b004999.txt">Table of n, a(n) for n = 1..1000</a>
%H Kevin A. Broughan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Broughan/broughan25.html">Characterizing the sum of two cubes</a>, J. Integer Seqs., Vol. 6, 2003.
%H Samuel S. Wagstaff, Jr., <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Wagstaff/wagstaff8.html">Equal Sums of Two Distinct Like Powers</a>, J. Int. Seq., Vol. 25 (2022), Article 22.3.1.
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>
%t Union[(#[[1]]^3+#[[2]]^3)&/@Tuples[Range[0,20],{2}]] (* _Harvey P. Dale_, Dec 04 2010 *)
%o (PARI) is(n)=my(k1=ceil((n-1/2)^(1/3)), k2=floor((4*n+1/2)^(1/3)), L); fordiv(n,d,if(d>=k1 && d<=k2 && denominator(L=(d^2-n/d)/3)==1 && issquare(d^2-4*L), return(1))); 0
%o list(lim)=my(v=List());for(x=0,(lim+.5)^(1/3),for(y=0,min(x,(lim-x^3)^(1/3)),listput(v,x^3+y^3))); vecsort(Vec(v),,8) \\ _Charles R Greathouse IV_, Jun 12 2012
%o (PARI) is(n)=my(L=sqrtnint(n-1,3)+1,U=sqrtnint(4*n,3));fordiv(n,m,if(L<=m&m<=U,my(ell=(m^2-n/m)/3);if(denominator(ell)==1&&issquare(m^2-4*ell),return(1))));0 \\ _Charles R Greathouse IV_, Apr 16 2013
%o (PARI) T=thueinit('z^3+1);
%o is(n)=n==0 || #select(v->min(v[1],v[2])>=0, thue(T,n))>0 \\ _Charles R Greathouse IV_, Nov 29 2014
%o (Haskell)
%o a004999 n = a004999_list !! (n-1)
%o a004999_list = filter c2 [1..] where
%o c2 x = any (== 1) $ map (a010057 . fromInteger) $
%o takeWhile (>= 0) $ map (x -) $ tail a000578_list
%o -- _Reinhard Zumkeller_, Dec 20 2013
%Y Subsequence of A045980; A003325 is a subsequence.
%Y Cf. A000578, A004825, A010057, A373972 (characteristic function).
%Y Indices of nonzero terms in A025446.
%K nonn,easy,nice
%O 1,3
%A _N. J. A. Sloane_, _Steven Finch_