OFFSET
1,3
COMMENTS
Sums of two integer cubes. - Charles R Greathouse IV, Mar 30 2022
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 86.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Kevin A. Broughan, Characterizing the sum of two cubes, J. Integer Seqs., Vol. 6, 2003.
EXAMPLE
7 = (2)^3 + (-1)^3.
MATHEMATICA
Union[Select[Sort[Flatten[Table[{j^3-i^3, j^3+i^3}, {i, 0, 20}, {j, i, 20}]]], #<20^3-19^3&]]
With[{nn=20}, Take[Union[Select[Flatten[{Total[#], #[[1]]-#[[2]]}&/@(Tuples[ Range[0, nn], 2]^3)], #>-1&]], 3*nn]] (* Harvey P. Dale, Jun 22 2014 *)
PROG
(PARI) is(n)=fordiv(n, d, my(L=(d^2-n/d)/3); if(denominator(L)==1 && issquare(d^2-4*L), return(1))); 0 \\ Charles R Greathouse IV, Jun 12 2012
(PARI) list(lim)={
my(v=List(), x3, t);
for(x=0, sqrtnint(lim\=1, 3),
x3=x^3;
for(y=0, min(sqrtnint(lim-x3, 3), x),
listput(v, x3+y^3)
)
);
for(x=2, t=sqrtint(lim\3),
x3=x^3;
for(y=sqrtnint(max(0, x3-lim-1), 3)+1, x-1,
listput(v, x3-y^3)
)
);
t=(t+1)^3-t^3;
if(t<=lim, listput(v, t));
Set(v);
} \\ Charles R Greathouse IV, Jun 12 2012, updated Jan 13 2022
(PARI) is(n)=#thue(thueinit(z^3+1), n) \\ Ralf Stephan, Oct 18 2013
(Haskell)
a045980 n = a045980_list !! (n-1)
a045980_list = 0 : filter f [1..] where
f x = g $ takeWhile ((<= 4 * x) . (^ 3)) $ a027750_row x where
g [] = False
g (d:ds) = r == 0 && a010052 (d ^ 2 - 4 * y) == 1 || g ds
where (y, r) = divMod (d ^ 2 - div x d) 3
-- Reinhard Zumkeller, Dec 20 2013
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved