login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045980 Numbers of the form x^3 + y^3 or x^3 - y^3. 11
0, 1, 2, 7, 8, 9, 16, 19, 26, 27, 28, 35, 37, 54, 56, 61, 63, 64, 65, 72, 91, 98, 117, 124, 125, 126, 127, 128, 133, 152, 169, 189, 208, 215, 216, 217, 218, 224, 243, 250, 271, 279, 280, 296, 316, 331, 335, 341, 342, 343, 344, 351, 370, 386, 387, 397, 407, 432 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 86.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Kevin A. Broughan, Characterizing the sum of two cubes, J. Integer Seqs., Vol. 6, 2003.

M. Kim, Diophantine equations in two variables

Index entries for sequences related to sums of cubes

EXAMPLE

7 = (2)^3 + (-1)^3.

MATHEMATICA

Union[Select[Sort[Flatten[Table[{j^3-i^3, j^3+i^3}, {i, 0, 20}, {j, i, 20}]]], #<20^3-19^3&]]

With[{nn=20}, Take[Union[Select[Flatten[{Total[#], #[[1]]-#[[2]]}&/@(Tuples[ Range[0, nn], 2]^3)], #>-1&]], 3*nn]] (* Harvey P. Dale, Jun 22 2014 *)

PROG

(PARI) is(n)=fordiv(n, d, my(L=(d^2-n/d)/3); if(denominator(L)==1 && issquare(d^2-4*L), return(1))); 0

list(lim)={

    my(v=List(), X, t);     for(x=0, (lim+1/2)^(1/3),

        X=x^3;

        for(y=0, min(x, (lim+1/2-X)^(1/3)),

            listput(v, X+y^3)

        )

    );

    for(x=2, t=sqrtint(lim\3),

        X=x^3;

        for(y=ceil((max(1, X-lim))^(1/3)), x-1,

            listput(v, X-y^3)

        )

    );

    t=(t+1)^3-t^3;

    if(t<=lim, listput(v, t));

    vecsort(Vec(v), , 8)

}; \\ Charles R Greathouse IV, Jun 12 2012

(PARI) is(n)=#thue(thueinit(z^3+1), n) \\ Ralf Stephan, Oct 18 2013

(Haskell)

a045980 n = a045980_list !! (n-1)

a045980_list = 0 : filter f [1..] where

   f x = g $ takeWhile ((<= 4 * x) . (^ 3)) $ a027750_row x where

     g [] = False

     g (d:ds) = r == 0 && a010052 (d ^ 2 - 4 * y) == 1 || g ds

       where (y, r) = divMod (d ^ 2 - div x d) 3

-- Reinhard Zumkeller, Dec 20 2013

CROSSREFS

Cf. A222304, A222305, A222306, A027750, A010052, A004999, A003325.

Sequence in context: A037455 A020675 A317303 * A104339 A199004 A168064

Adjacent sequences:  A045977 A045978 A045979 * A045981 A045982 A045983

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 30 11:32 EDT 2020. Contains 337439 sequences. (Running on oeis4.)