login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = Sum_{n>=0} x^n * C(x)^(n^2), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
0

%I #7 Mar 06 2014 12:37:36

%S 1,1,2,7,29,133,658,3471,19400,114417,709815,4619048,31446579,

%T 223419752,1652599036,12698380493,101151995810,833740791381,

%U 7098646227614,62335051895044,563749889969108,5244173616702347,50117689766439784

%N G.f.: A(x) = Sum_{n>=0} x^n * C(x)^(n^2), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

%F a(n) = Sum_{k=0..n-1} binomial((n-k)^2+2k, k) * (n-k)^2/((n-k)^2 + 2k) for n>0 with a(0)=1.

%F G.f.: A(x) = Sum_{n>=0} x^n*C(x)^n*Product_{k=1..n} (1-x*C(x)^(4*k-3))/(1-x*C(x)^(4*k-1)) where C(x) = 1 + x*C(x)^2.

%F Let q = C(x) = 1 + x*C(x)^2, then g.f. A(x) equals the continued fraction:

%F A(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...)))))))))

%F due to an identity of a partial elliptic theta function.

%F G.f.: A(x) = 1 + x*C(x)* G( x*C(x)^2 ), where G(x) = Sum_{k>=0} x^k*(1+x)^(k^2) is the g.f. of A121689.

%e G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 29*x^4 + 133*x^5 + 658*x^6 +...

%t Flatten[{1,Table[Sum[Binomial[(n-k)^2+2*k, k] * (n-k)^2/((n-k)^2 + 2*k),{k,0,n-1}],{n,1,20}]}] (* _Vaclav Kotesovec_, Mar 06 2014 *)

%o (PARI) {a(n)=if(n<0,0,0^n+sum(k=0, n-1, binomial((n-k)^2+2*k, k)*(n-k)^2/((n-k)^2+2*k)))}

%Y Cf. A121689, A000108.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 15 2011