login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071943
Triangle T(n,k) (n>=0, 0 <= k <= n) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R=(1,0), V=(0,1) and D=(1,2).
7
1, 1, 1, 1, 2, 3, 1, 3, 7, 9, 1, 4, 12, 24, 31, 1, 5, 18, 46, 89, 113, 1, 6, 25, 76, 183, 342, 431, 1, 7, 33, 115, 323, 741, 1355, 1697, 1, 8, 42, 164, 520, 1376, 3054, 5492, 6847, 1, 9, 52, 224, 786, 2326, 5900, 12768, 22669, 28161, 1, 10, 63, 296, 1134, 3684, 10370
OFFSET
0,5
COMMENTS
For another interpretation of this array see the Example section.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
James East, Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
N. J. A. Sloane, Rows 0 through 100
FORMULA
G.f.=(1-q)/[z(2t+2t^2z-1+q)], where q=sqrt(1-4tz-4t^2z^2).
Define T(0,0)=1 and T(n,k)=0 for k<0 and k >n. Then the array is generated by the recurrence T(n,k) = T(n,k-1) + T(n-1,k) + T(n-1,k-2). For example, T(5,3) = 46 = T(5,2) + T(4,3) + T(4,1) = 18 + 24 + 4. - N. J. A. Sloane, Mar 28 2013
EXAMPLE
T(3,2)=7 because we have RRRVV, RRVRV, RRVVR, RVRRV, RVRVR, RRD and RDR.
Array begins:
1,
1, 1,
1, 2, 3,
1, 3, 7, 9,
1, 4, 12, 24, 31,
1, 5, 18, 46, 89, 113,
1, 6, 25, 76, 183, 342, 431,
1, 7, 33, 115, 323, 741, 1355, 1697,
...
Equivalently, let U(n,k) (for n >= 0, 0 <= k <= n) be the number of walks from (0,0) to (n,k) using steps (1,1), (1,-1) and (0,-1). Then U(n,n-k) = T(n,k). The U(n,k) array begins:
4: 0 0 0 0 1 5 ...
3: 0 0 0 1 4 18 ...
2: 0 0 1 3 12 46 ...
1: 0 1 2 7 24 89 ...
0: 1 1 3 9 31 113 ...
-------------------------
k/n:0 1 2 3 4 5 ...
The recurrence for this version is: U(0,0)=1, U(n,k)=0 for k>n or k<0; U(n,k) = U(n,k+1) + U(n-1,k+1) + U(n,k-1). E.g. 46 = 18 + 4 + 24. Also U(n,0) = A052709(n-1).
MAPLE
U:=proc(n, k) option remember;
if (n < 0) then RETURN(0);
elif (n=0) then
if (k=0) then RETURN(1); else RETURN(0); fi;
elif (k>n or k<0) then RETURN(0);
else RETURN(U(n, k+1)+U(n-1, k+1)+U(n-1, k-1));
fi;
end;
for n from 0 to 20 do
lprint( [seq(U(n, n-i), i=0..n)] );
od:
MATHEMATICA
t[0, 0] = 1; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, k] + t[n-1, k-2]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after N. J. A. Sloane *)
CROSSREFS
Diagonal entries yield A052709. Row sums are A071356.
Related arrays: A071944, A071945, A071946.
Sequence in context: A208338 A236918 A152821 * A357329 A062869 A102473
KEYWORD
nonn,easy,tabl
AUTHOR
N. J. A. Sloane, Jun 15 2002
EXTENSIONS
Edited by Emeric Deutsch, Dec 21 2003
Edited by N. J. A. Sloane, Mar 28 2013
STATUS
approved