login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236918
Triangle read by rows: Catalan triangle of the k-Fibonacci sequence.
2
1, 1, 1, 1, 2, 3, 1, 3, 7, 8, 1, 4, 12, 22, 24, 1, 5, 18, 43, 73, 75, 1, 6, 25, 72, 156, 246, 243, 1, 7, 33, 110, 283, 564, 844, 808, 1, 8, 42, 158, 465, 1092, 2046, 2936, 2742, 1, 9, 52, 217, 714, 1906, 4178, 7449, 10334, 9458, 1, 10, 63, 288, 1043, 3096, 7670, 15904, 27231, 36736, 33062
OFFSET
1,5
COMMENTS
Reversal of the Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A000958. - Philippe Deléham, Feb 10 2014
Row sums are in A109262. - Philippe Deléham, Feb 10 2014
LINKS
Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832.
FORMULA
T(n, k) = coefficient of [x^k]( p(n, x) ), where p(n, x) = Sum_{j=0..n} (j/(2*n-j))*binomial(2*n-j, n-j)*x^(n-1)*Fibonacci(j, 1/x) with p(0, x) = 1 and Fibonacci(n, x) are the Fibonacci polynomials. - G. C. Greubel, Jun 14 2022
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 3;
1, 3, 7, 8;
1, 4, 12, 22, 24;
1, 5, 18, 43, 73, 75;
1, 6, 25, 72, 156, 246, 243;
1, 7, 33, 110, 283, 564, 844, 808;
1, 8, 42, 158, 465, 1092, 2046, 2936, 2742;
1, 9, 52, 217, 714, 1906, 4178, 7449, 10334, 9458;
1, 10, 63, 288, 1043, 3096, 7670, 15904, 27231, 36736, 33062;
... - Extended by Philippe Deléham, Feb 10 2014
MATHEMATICA
P[n_, x_]:= P[n, x]= If[n==0, 1, Sum[(j/(2*n-j))*Binomial[2*n-j, n-j]*Fibonacci[j, 1/x] *x^(n-1), {j, 0, n}]];
T[n_, k_]:= Coefficient[P[n, x], x, k];
Table[T[n, k], {n, 10}, {k, 0, n-1}]//Flatten (* G. C. Greubel, Jun 14 2022 *)
PROG
(SageMath)
def f(n, x): return sum( binomial(n-j-1, j)*x^(n-2*j-1) for j in (0..(n-1)//2) )
def p(n, x):
if (n==0): return 1
else: return sum( (j/(2*n-j))*binomial(2*n-j, n-j)*x^(n-1)*f(j, 1/x) for j in (0..n) )
def A236918(n, k): return ( p(n, x) ).series(x, n+1).list()[k]
flatten([[A236918(n, k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Jun 14 2022
CROSSREFS
Diagonals give A000958, A114495.
Cf. A109262 (row sums).
Sequence in context: A059397 A209567 A208338 * A152821 A071943 A357329
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 09 2014
EXTENSIONS
More terms from Philippe Deléham, Feb 09 2014
STATUS
approved