login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109262 A Catalan transform of the Fibonacci numbers. 10
0, 1, 2, 6, 19, 63, 215, 749, 2650, 9490, 34318, 125104, 459152, 1694914, 6287896, 23429158, 87635243, 328917615, 1238303243, 4674847097, 17692789741, 67114622451, 255120892105, 971649360211, 3707176155659, 14167390221873 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A column of A109267.

Hankel transform is -F(2n). a(n+1) has Hankel transform F(2n+1). - Paul Barry, Nov 22 2007

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.

Stoyan Dimitrov, On permutation patterns with constrained gap sizes, arXiv:2002.12322 [math.CO], 2020.

Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832.

Guo-Niu Han, Enumeration of Standard Puzzles

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

Merve Taştan, Engin Özkan, Catalan transform of the k-Jacobsthal sequence, Electronic Journal of Mathematical Analysis and Applications (2020) Vol. 8, No. 2, 70-74.

FORMULA

G.f.: x*c(x)/(1-x*c(x)-x^2*c(x)^2) = (1-sqrt(1-4x))/(2(sqrt(1-4x)+x)) where c(x) is the g.f. of A000108;

a(n) = Sum_{k=0..n} (k/(2n-k))*binomial(2n-k, n-k)*F(k).

a(n) = Sum_{k=0..n} A106566(n,k)*A000045(k). - Philippe Deléham, Oct 28 2008

a(n) = Sum_{k=0..n} A039599(n,k)*(-1)^(k+1)*A000045(k). - Philippe Deléham, Oct 28 2008

Conjecture: n*a(n) + (-7*n+4)*a(n-1) + (7*n-2)*a(n-2) + (19*n-60)*a(n-3) + 2*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Nov 26 2012

Recurrence: n*(5*n-11)*a(n) = 2*(20*n^2 - 59*n + 30)*a(n-1) - 15*(5*n^2 - 19*n + 16)*a(n-2) - 2*(2*n-5)*(5*n-6)*a(n-3). - Vaclav Kotesovec, Feb 13 2014

a(n) ~ 5*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 13 2014

MATHEMATICA

CoefficientList[Series[(1-Sqrt[1-4*x])/(2*(Sqrt[1-4*x]+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

CROSSREFS

Cf. A081696.

Sequence in context: A284216 A059712 A059713 * A006724 A057409 A346157

Adjacent sequences:  A109259 A109260 A109261 * A109263 A109264 A109265

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Jun 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 16:04 EST 2021. Contains 349413 sequences. (Running on oeis4.)