login
A109262
A Catalan transform of the Fibonacci numbers.
10
0, 1, 2, 6, 19, 63, 215, 749, 2650, 9490, 34318, 125104, 459152, 1694914, 6287896, 23429158, 87635243, 328917615, 1238303243, 4674847097, 17692789741, 67114622451, 255120892105, 971649360211, 3707176155659, 14167390221873
OFFSET
0,3
COMMENTS
A column of A109267.
Hankel transform is -Fibonacci(2*n). a(n+1) has Hankel transform Fibonacci(2*n+1). - Paul Barry, Nov 22 2007
LINKS
Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
Stoyan Dimitrov, On permutation patterns with constrained gap sizes, arXiv:2002.12322 [math.CO], 2020.
Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832.
Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
Merve Taştan and Engin Özkan, Catalan transform of the k-Jacobsthal sequence, Electronic Journal of Mathematical Analysis and Applications (2020) Vol. 8, No. 2, 70-74.
FORMULA
G.f.: x*c(x)/(1 - x*c(x) - x^2*c(x)^2) = (1 - sqrt(1-4*x))/(2*(x + sqrt(1-4*x))) where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..n} (k/(2*n-k))*binomial(2*n-k, n-k)*Fibonacci(k).
a(n) = Sum_{k=0..n} A106566(n,k)*A000045(k). - Philippe Deléham, Oct 28 2008
a(n) = Sum_{k=0..n} A039599(n,k)*(-1)^(k+1)*A000045(k). - Philippe Deléham, Oct 28 2008
n*a(n) - (7*n-4)*a(n-1) + (7*n-2)*a(n-2) + (19*n-60)*a(n-3) + 2*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Nov 26 2012
Recurrence: n*(5*n-11)*a(n) = 2*(20*n^2 - 59*n + 30)*a(n-1) - 15*(5*n^2 - 19*n + 16)*a(n-2) - 2*(2*n-5)*(5*n-6)*a(n-3). - Vaclav Kotesovec, Feb 13 2014
a(n) ~ 5*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
a(n) = (1/(2*sqrt(5)))*Catalan(n-1)*Sum_{j=0..1} ((-1)^j + sqrt(5)) * Hypergeometric2F1([2,1-n], [2*(1-n)], (1+(-1)^j*sqrt(5))/2). - G. C. Greubel, May 30 2022
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4*x])/(2*(Sqrt[1-4*x]+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
PROG
(Magma) [n eq 0 select 0 else (&+[k*Binomial(2*n-k-1, n-1)*Fibonacci(k): k in [0..n]])/n: n in [0..30]]; // G. C. Greubel, May 30 2022
(SageMath) [0]+[(1/n)*sum(k*binomial(2*n-k-1, n-1)*fibonacci(k) for k in (1..n)) for n in (1..30)] # G. C. Greubel, May 30 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 24 2005
STATUS
approved