login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109265
Row sums of Riordan array (1-x-x^2,x(1-x)).
8
1, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0
OFFSET
0,3
FORMULA
G.f.: (1-x-x^2)/(1-x+x^2).
a(n) = -a(n+3) if n>0. - Michael Somos, Apr 15 2015
a(n) = A257076(n+1). - Michael Somos, Apr 15 2015
Convolution inverse of A006355. - Michael Somos, Apr 15 2015
a(n) = A130772(n+1) = A184334(n+2) if n>0. - Michael Somos, Sep 01 2015
EXAMPLE
G.f. = 1 - 2*x^2 - 2*x^3 + 2*x^5 + 2*x^6 - 2*x^8 - 2*x^9 + 2*x^11 + 2*x^12 + ...
MATHEMATICA
CoefficientList[Series[(1-x-x^2)/(1-x+x^2), {x, 0, 60}], x] (* G. C. Greubel, Aug 04 2018 *)
LinearRecurrence[{1, -1}, {1, 0, -2}, 120] (* Harvey P. Dale, Apr 08 2019 *)
PROG
(PARI) {a(n) = n+=2; if( n<3, n==2, 2 * (n%3>0) * (-1)^(n\3))}; /* Michael Somos, Apr 15 2015 */
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2)/(1-x+x^2))); // G. C. Greubel, Aug 04 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Barry, Jun 24 2005
STATUS
approved