login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202145
G.f.: 1 + Sum_{n>=1} x^n * Product_{k=1..n} (1 - x^k) / (1 - x^(2*k+1)).
2
1, 1, 0, 0, 0, 0, -1, 1, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -1, 1, 0, -2, 2, 2, -4, 2, 0, -2, 4, -2, -2, 2, 0, 0, 0, 0, -3, 3, 2, -4, 2, 0, -2, 2, 0, -2, 2, 0, 0, 0, -2, 0, 2, 2, -4, 2, 0, -4, 6, -2, -1, 1, 0, 0, -2, 2, -2, 2, 2, -2, 0, -2, 0, 4, -2, -2, 2, 0
OFFSET
0,10
LINKS
EXAMPLE
G.f.: A(x) = 1 + x - x^6 + x^7 - 2*x^9 + 2*x^10 - 2*x^12 + 2*x^13 - 2*x^15 +... where A(x) = 1 + x*(1-x)/(1-x^3) + x^2*(1-x)*(1-x^2)/((1-x^3)*(1-x^5)) + x^3*(1-x)*(1-x^2)*(1-x^3)/((1-x^3)*(1-x^5)*(1-x^7)) +...
PROG
(PARI) {a(n)=polcoeff(1 + sum(m=1, n, x^m*prod(k=1, m, (1-x^k)/(1-x^(2*k+1) +x*O(x^n)))), n)}
CROSSREFS
Cf. A202146 (partial sums).
Sequence in context: A353768 A140666 A350628 * A130772 A257076 A109265
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 12 2011
STATUS
approved