login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202146
G.f.: 1/(1-x) + Sum_{n>=1} x^n/(1-x) * Product_{k=1..n} (1 - x^k) / (1 - x^(2*k+1)).
3
1, 2, 2, 2, 2, 2, 1, 2, 2, 0, 2, 2, 0, 2, 2, 0, 2, 2, 1, 2, 2, 0, 2, 4, 0, 2, 2, 0, 4, 2, 0, 2, 2, 2, 2, 2, -1, 2, 4, 0, 2, 2, 0, 2, 2, 0, 2, 2, 2, 2, 0, 0, 2, 4, 0, 2, 2, -2, 4, 2, 1, 2, 2, 2, 0, 2, 0, 2, 4, 2, 2, 0, 0, 4, 2, 0, 2, 2, 2, 2, 2, 0, 2, 4, 0, 0
OFFSET
0,2
LINKS
FORMULA
a(k) == 1 (mod 2) iff k = 3*n*(n+1) for n>=0 (conjecture).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + x^6 + 2*x^7 +...
where A(x) = 1/(1-x) + x*(1-x)/((1-x)*(1-x^3)) + x^2*(1-x)*(1-x^2)/((1-x)*(1-x^3)*(1-x^5)) + x^3*(1-x)*(1-x^2)*(1-x^3)/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)) +...
which is a q-series analog of the sum:
Pi/2 = 0!/1 + 1!/(1*3) + 2!/(1*3*5) + 3!/(1*3*5*7) + 4!/(1*3*5*7*9) + 5!/(1*3*5*7*9*11) +...
Odd terms (A202150), located at positions 3*n*(n+1) for n>=0, begin:
[1,1,1,-1,1,-1,1,3,1,-1,1,-1,1,1,1,-1,-1,1,1,1,1,-1,3,-1,1,1,1,...].
PROG
(PARI) {a(n)=polcoeff((1+sum(m=1, n, x^m*prod(k=1, m, (1-x^k)/(1-x^(2*k+1) +x*O(x^n)))))/(1-x+x*O(x^n)), n)}
CROSSREFS
Cf. A202145 (first differences), A202150 (odd terms).
Sequence in context: A027386 A102300 A359511 * A087010 A098220 A297032
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 12 2011
STATUS
approved