login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102300
Number of distinct prime divisors of n where n and n+1 are composite or twin composite numbers.
0
1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 1, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2
OFFSET
1,3
EXAMPLE
For n=8 n+1=9 a twin composite pair. 8=2^3 has 1 distinct divisor, 2.
PROG
(PARI) f2(n) = for(x=1, n, y=composite(x); if(!isprime(y+1), print1(omega(y)", "))) composite(n) =\The n-th composite number. 1 is def as not prime nor composite. { local(c, x); c=1; x=1; while(c <= n, x++; if(!isprime(x), c++); ); return(x) }
CROSSREFS
Sequence in context: A083534 A174664 A027386 * A359511 A202146 A087010
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Feb 19 2005
STATUS
approved