login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052567
E.g.f.: (1-x)^2/(1-3*x+x^2).
3
1, 1, 6, 48, 504, 6600, 103680, 1900080, 39795840, 937681920, 24548832000, 706966444800, 22210346188800, 755916735974400, 27706219904563200, 1088037381150720000, 45576301518139392000, 2028445209752113152000, 95589693062063456256000, 4754884242802394308608000
OFFSET
0,3
FORMULA
E.g.f.: (-1+x)^2/(1-3*x+x^2).
Recurrence: {a(1)=1, a(0)=1, a(2)=6, (n^2+3*n+2)*a(n)+(-6-3*n)*a(n+1)+a(n+2)=0}
Sum(-1/5*(3*_alpha-2)*_alpha^(-1-n), _alpha=RootOf(_Z^2-3*_Z+1))*n!
a(n) = n! * Fibonacci(2*n) for n > 0. - Ilya Gutkovskiy, Jul 17 2021
MAPLE
spec := [S, {S=Sequence(Prod(Z, Sequence(Z), Sequence(Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-x)^2/(1-3x+x^2), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jul 06 2021 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved