login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: (1-x)^2/(1-3*x+x^2).
3

%I #20 Dec 14 2023 11:40:22

%S 1,1,6,48,504,6600,103680,1900080,39795840,937681920,24548832000,

%T 706966444800,22210346188800,755916735974400,27706219904563200,

%U 1088037381150720000,45576301518139392000,2028445209752113152000,95589693062063456256000,4754884242802394308608000

%N E.g.f.: (1-x)^2/(1-3*x+x^2).

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=509">Encyclopedia of Combinatorial Structures 509</a>

%F E.g.f.: (-1+x)^2/(1-3*x+x^2).

%F Recurrence: {a(1)=1, a(0)=1, a(2)=6, (n^2+3*n+2)*a(n)+(-6-3*n)*a(n+1)+a(n+2)=0}

%F Sum(-1/5*(3*_alpha-2)*_alpha^(-1-n), _alpha=RootOf(_Z^2-3*_Z+1))*n!

%F a(n) = n! * Fibonacci(2*n) for n > 0. - _Ilya Gutkovskiy_, Jul 17 2021

%p spec := [S,{S=Sequence(Prod(Z,Sequence(Z),Sequence(Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t With[{nn=20},CoefficientList[Series[(1-x)^2/(1-3x+x^2),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Jul 06 2021 *)

%Y Cf. A000142, A001906, A005443, A088305.

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000