Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 25 2019 17:01:09
%S 1,1,2,12,48,240,2160,15120,120960,1451520,14515200,159667200,
%T 2395008000,31135104000,435891456000,7846046208000,125536739328000,
%U 2134124568576000,44816615940096000,851515702861824000
%N E.g.f. 1/((1-x)(1-x^3)).
%H Robert Israel, <a href="/A052569/b052569.txt">Table of n, a(n) for n = 0..448</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=512">Encyclopedia of Combinatorial Structures 512</a>
%F E.g.f.: 1/(-1+x)/(-1+x^3)
%F Recurrence: {a(1)=1, a(0)=1, a(2)=2, (-14*n-n^3-7*n^2-8)*a(n)+(-2-n)*a(n+1)+a(n+3)-a(n+2)=0}
%F (1/3*n+2/3+Sum(1/9*(-1+_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^2+_Z+1)))*n!
%F a(n) = n!*A008620(n). - _R. J. Mathar_, Nov 27 2011
%p spec := [S,{S=Prod(Sequence(Prod(Z,Z,Z)),Sequence(Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%p # Alternative:
%p f:= gfun:-rectoproc({ a(1)=1, a(0)=1, a(2)=2, (-14*n-n^3-7*n^2-8)*a(n)+(-2-n)*a(n+1)+a(n+3)-a(n+2)=0},a(n),remember):
%p map(f, [$0..30]); # _Robert Israel_, Sep 25 2019
%t With[{nn=20},CoefficientList[Series[1/((1-x)(1-x^3)),{x,0,nn}],x]Range[0,nn]!] (* _Harvey P. Dale_, Aug 25 2012 *)
%K easy,nonn
%O 0,3
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000