OFFSET
0,2
COMMENTS
a(n) equals the permanent of the (n+1) X (n+1) matrix whose entry directly below the entry in the top right corner is 3, and all of whose other entries are 1. [From John M. Campbell, May 25 2011]
In factorial base representation (A007623) the terms are written as: 1, 20, 120, 1200, 12000, 120000, ... From a(2) = 10 = "120" onward each term begins always with "120", followed by n-2 additional zeros. - Antti Karttunen, Sep 24 2016
LINKS
FORMULA
E.g.f.: -(-2*x+2*x^2-1)/(-1+x)^2
Recurrence: {a(0)=1, a(1)=4, a(2)=10, (-n^2-5*n-4)*a(n)+(n+3)*a(n+1)=0}
a(n) = (n+3)*n! for n>0.
For n <= 1, a(n) = (n+1)^2, for n > 1, a(n) = (n+1)! + 2*n! - Antti Karttunen, Sep 24 2016
From Amiram Eldar, Nov 06 2020: (Start)
Sum_{n>=0} 1/a(n) = e - 4/3.
Sum_{n>=0} (-1)^n/a(n) = 8/3 - 5/e. (End)
MAPLE
spec := [S, {S=Prod(Union(Z, Z, Sequence(Z)), Sequence(Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1+2x-2x^2)/(1-x)^2, {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jul 03 2020 *)
PROG
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved