login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052572
E.g.f. (1+2x-2x^2)/(1-x)^2.
5
1, 4, 10, 36, 168, 960, 6480, 50400, 443520, 4354560, 47174400, 558835200, 7185024000, 99632332800, 1482030950400, 23538138624000, 397533007872000, 7113748561920000, 134449847820288000, 2676192208994304000
OFFSET
0,2
COMMENTS
a(n) equals the permanent of the (n+1) X (n+1) matrix whose entry directly below the entry in the top right corner is 3, and all of whose other entries are 1. [From John M. Campbell, May 25 2011]
In factorial base representation (A007623) the terms are written as: 1, 20, 120, 1200, 12000, 120000, ... From a(2) = 10 = "120" onward each term begins always with "120", followed by n-2 additional zeros. - Antti Karttunen, Sep 24 2016
FORMULA
E.g.f.: -(-2*x+2*x^2-1)/(-1+x)^2
Recurrence: {a(0)=1, a(1)=4, a(2)=10, (-n^2-5*n-4)*a(n)+(n+3)*a(n+1)=0}
a(n) = (n+3)*n! for n>0.
For n <= 1, a(n) = (n+1)^2, for n > 1, a(n) = (n+1)! + 2*n! - Antti Karttunen, Sep 24 2016
From Amiram Eldar, Nov 06 2020: (Start)
Sum_{n>=0} 1/a(n) = e - 4/3.
Sum_{n>=0} (-1)^n/a(n) = 8/3 - 5/e. (End)
MAPLE
spec := [S, {S=Prod(Union(Z, Z, Sequence(Z)), Sequence(Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1+2x-2x^2)/(1-x)^2, {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jul 03 2020 *)
PROG
(Scheme, two different implementations)
(define (A052572 n) (if (zero? n) 1 (* (+ 3 n) (A000142 n))))
(define (A052572 n) (if (<= n 1) (* (+ 1 n) (+ 1 n)) (+ (A000142 (+ 1 n)) (* 2 (A000142 n)))))
;; Antti Karttunen, Sep 24 2016
CROSSREFS
Essentially twice A038720.
Cf. A000142.
Row 7 of A276955, from a(2)=10 onward.
Cf. sequences with formula (n + k)*n! listed in A282466.
Sequence in context: A345245 A197552 A378732 * A079725 A154152 A357051
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved