login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. (1+2x-2x^2)/(1-x)^2.
5

%I #30 Nov 06 2020 03:52:49

%S 1,4,10,36,168,960,6480,50400,443520,4354560,47174400,558835200,

%T 7185024000,99632332800,1482030950400,23538138624000,397533007872000,

%U 7113748561920000,134449847820288000,2676192208994304000

%N E.g.f. (1+2x-2x^2)/(1-x)^2.

%C a(n) equals the permanent of the (n+1) X (n+1) matrix whose entry directly below the entry in the top right corner is 3, and all of whose other entries are 1. [From _John M. Campbell_, May 25 2011]

%C In factorial base representation (A007623) the terms are written as: 1, 20, 120, 1200, 12000, 120000, ... From a(2) = 10 = "120" onward each term begins always with "120", followed by n-2 additional zeros. - _Antti Karttunen_, Sep 24 2016

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=515">Encyclopedia of Combinatorial Structures 515</a>

%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>

%F E.g.f.: -(-2*x+2*x^2-1)/(-1+x)^2

%F Recurrence: {a(0)=1, a(1)=4, a(2)=10, (-n^2-5*n-4)*a(n)+(n+3)*a(n+1)=0}

%F a(n) = (n+3)*n! for n>0.

%F For n <= 1, a(n) = (n+1)^2, for n > 1, a(n) = (n+1)! + 2*n! - _Antti Karttunen_, Sep 24 2016

%F From _Amiram Eldar_, Nov 06 2020: (Start)

%F Sum_{n>=0} 1/a(n) = e - 4/3.

%F Sum_{n>=0} (-1)^n/a(n) = 8/3 - 5/e. (End)

%p spec := [S,{S=Prod(Union(Z,Z,Sequence(Z)),Sequence(Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t With[{nn=20},CoefficientList[Series[(1+2x-2x^2)/(1-x)^2,{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Jul 03 2020 *)

%o (Scheme, two different implementations)

%o (define (A052572 n) (if (zero? n) 1 (* (+ 3 n) (A000142 n))))

%o (define (A052572 n) (if (<= n 1) (* (+ 1 n) (+ 1 n)) (+ (A000142 (+ 1 n)) (* 2 (A000142 n)))))

%o ;; _Antti Karttunen_, Sep 24 2016

%Y Essentially twice A038720.

%Y Cf. A000142.

%Y Row 7 of A276955, from a(2)=10 onward.

%Y Cf. sequences with formula (n + k)*n! listed in A282466.

%K easy,nonn

%O 0,2

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000