login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052589
a(n) = (2^n - 1)*n!.
2
0, 1, 6, 42, 360, 3720, 45360, 640080, 10281600, 185431680, 3712262400, 81709689600, 1961511552000, 51005527372800, 1428241944729600, 42848566016256000, 1371175035310080000, 46620306887970816000, 1678337450340655104000, 63776944758045302784000
OFFSET
0,3
FORMULA
E.g.f.: x / ((1-2*x) * (1-x)).
D-finite with Recurrence: {a(1)=1, a(0)=0, (2*n^2 + 6*n + 4)*a(n) + (-6 - 3*n)*a(n+1) + a(n+2) = 0}.
G.f.: -G(0) where G(k) = 1 - 2^k/(1 - x*(k+1)/(x*(k+1) - 2^k/G(k+1) )), (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
From Michael Somos, Jul 22 2017: (Start)
If A(x) = Sum_{k>0} x^k / a(k), then A(2*x) = A(x) + e^x - 1.
0 = +a(n)*(+1104*a(n+3) -792*a(n+4) +136*a(n+5) -6*a(n+6)) +a(n+1)*(+828*a(n+3) -435*a(n+4) +39*a(n+5)) + a(n+2)*(+299*a(n+3) -102*a(n+4)) +a(n+3)*(+69*a(n+3)) for n>=0. (End)
MAPLE
spec := [S, {S=Prod(Z, Sequence(Z), Sequence(Union(Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Table[(2^n-1)n!, {n, 0, 20}] (* Harvey P. Dale, Jul 18 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, (2^n - 1)*n!)}; /* Michael Somos, Jul 22 2017 */
CROSSREFS
Cf. A000165.
Sequence in context: A135887 A218817 A368321 * A074107 A187121 A225497
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved